Advertisement

Normal boundary intersection applied as multivariate and multiobjective optimization in the treatment of amoxicillin synthetic solution

  • Deberton Moura
  • Vithor Barcelos
  • Gisella Rossana Lamas Samanamud
  • Alexandre Boscaro França
  • Renata Lofrano
  • Carla Cristina Almeida Loures
  • Luzia Lima Rezende Naves
  • Mateus Souza Amaral
  • Fabiano Luiz Naves
Article
  • 105 Downloads

Abstract

Amoxicillin is a useful antibiotic to combat bacterial infections. However, this drug can cause serious problems when discarded in waterways due to its great bioaccumulation potential. This compound can be treated via advanced oxidation processes (AOPs), which are capable of converting amoxicillin into carbon dioxide and water. In this context, the use of ozone as an oxidizer has excelled in amoxicillin degradation. This paper aims at treating a synthetic solution of amoxicillin (0.1 g L−1) in a reactor with ozone bubbling. A Design of Experiment (DoE) with a response surface known as Central Composite Design (CCD) was used to optimize the treatment process. In addition, a Normal Boundary Intersection (NBI) method was used in the construction of a Pareto boundary chart. Results after 1-h treatment showed a reduction of 53% of the initial organic matter from a designed model using factors, such as pH, ozone generator power, and O3 flow. A model was built from the CCD with score of 0.9929. Thus, the model was able to represent the real scenario with confidence.

Keywords

Advanced oxidation process Drugs Ozonation Pareto frontier 

References

  1. Abellán, M. N., Bayarri, B., Giménez, J., & Costa, J. (2007). Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Applied Catalysis B: Environmental, 74(3–4), 233–241.  https://doi.org/10.1016/j.apcatb.2007.02.017.CrossRefGoogle Scholar
  2. Al-Ahmad, A., Daschner, F. D., & Kümmerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Archives of Environmental Contamination and Toxicology, 37(2), 158–163.  https://doi.org/10.1007/s002449900501.CrossRefGoogle Scholar
  3. Alexy, R., Kümpel, T., & Kümmerer, K. (2004). Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere, 57(6), 505–512.  https://doi.org/10.1016/j.chemosphere.2004.06.024.CrossRefGoogle Scholar
  4. Andreozzi, R., Caprio, V., Ciniglia, C., De Champdoré, M., Lo Giudice, R., Marotta, R., & Zuccato, E. (2004). Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science and Technology, 38(24), 6832–6838.  https://doi.org/10.1021/es049509a.CrossRefGoogle Scholar
  5. Andreozzi, R., Canterino, M., Marotta, R., & Paxeus, N. (2005). Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of Hazardous Materials, 122(3), 243–250.  https://doi.org/10.1016/j.jhazmat.2005.03.004.CrossRefGoogle Scholar
  6. Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., & Zuccato, E. (2006). Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science and Technology, 40(1), 357–363.  https://doi.org/10.1021/es050991m.CrossRefGoogle Scholar
  7. Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: a new method for generating the oareto surface in nonlinear multicriteria optimization problems. SIAM Journal of Optimal, 8, 631–657.  https://doi.org/10.1137/S1052623496307510
  8. Daughton, C., & Ternes, T. (2008). Special report: pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 107, Suppl.  https://doi.org/10.1289/ehp.99107s6907, 107, 907, 938.
  9. Elmolla, E. S., & Chaudhuri, M. (2009). Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. Journal of Hazardous Materials, 172(2–3), 1476–1481.  https://doi.org/10.1016/j.jhazmat.2009.08.015.CrossRefGoogle Scholar
  10. Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1–3), 46–52.  https://doi.org/10.1016/j.desal.2009.11.003.CrossRefGoogle Scholar
  11. Federal, U., & Gerais, D. E. M. (2014). Aplicação de processos oxidativos avançados para o tratamento de efluente da produção de antibióticos.Google Scholar
  12. Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159.  https://doi.org/10.1016/j.aquatox.2005.09.009.CrossRefGoogle Scholar
  13. Foti, M., Giacopello, C., Bottari, T., Fisichella, V., Rinaldo, D., & Mammina, C. (2009). Antibiotic resistance of gram negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea. Marine Pollution Bulletin, 58(9), 1363–1366.  https://doi.org/10.1016/j.marpolbul.2009.04.020.CrossRefGoogle Scholar
  14. Glassmeyer, S. T., Hinchey, E. K., Boehme, S. E., Daughton, C. G., Ruhoy, I. S., Conerly, O., Daniels, R. L., Lauer, L., McCarthy, M., Nettesheim, T. G., Sykes, K., & Thompson, V. G. (2009). Disposal practices for unwanted residential medications in the United States. Environment International, 35(3), 566–572.  https://doi.org/10.1016/j.envint.2008.10.007.CrossRefGoogle Scholar
  15. Gomes Júnior, O., Borges Neto, W., Machado, A. E. H., Daniel, D., & Trovó, A. G. (2017). Optimization of fipronil degradation by heterogeneous photocatalysis: identification of transformation products and toxicity assessment. Water Research, 110, 133–140.  https://doi.org/10.1016/j.watres.2016.12.017.CrossRefGoogle Scholar
  16. Gong, H., Chu, W., Chen, M., & Wang, Q. (2017). A systematic study on photocatalysis of antipyrine: catalyst characterization, parameter optimization, reaction mechanism and toxicity evolution to plankton. Water Research, 112, 167–175.  https://doi.org/10.1016/j.watres.2017.01.041.CrossRefGoogle Scholar
  17. Gul, T., Bischoff, R., & Permentier, H. P. (2015). Optimization of reaction parameters for the electrochemical oxidation of lidocaine with a design of experiments approach. Electrochimica Acta, 171, 23–28.  https://doi.org/10.1016/j.electacta.2015.04.160.CrossRefGoogle Scholar
  18. Halling-Sorensen, B., Halling-Sorensen, B., Nielsen, S. N., Nielsen, S. N., Lanzky, P. F., Lanzky, P. F., et al. (1998). Occurrence, fate and effects of pharmaceuticals substance in the environment—a review. Chemosphere, 36(2), 357–393.  https://doi.org/10.1016/S0045-6535(97)00354-8.CrossRefGoogle Scholar
  19. Hartig, C., Storm, T., & Jekel, M. (1999). Detection and identification of sulphonamide drugs in municipal wastewater by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. Journal of Chromatography, 854(1), 163–173.CrossRefGoogle Scholar
  20. Heberer, T., & Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17.  https://doi.org/10.1016/S0378-4274(02)00041-3.CrossRefGoogle Scholar
  21. Hua, W., Bennett, E. R., & Letcher, R. J. (2006). Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Research, 40(12), 2259–2266.  https://doi.org/10.1016/j.watres.2006.04.033.CrossRefGoogle Scholar
  22. Jung, Y. J., Kim, W. G., Yoon, Y., Kang, J. W., Hong, Y. M., & Kim, H. W. (2012). Removal of amoxicillin by UV and UV/H2O2 processes. Science of the Total Environment, 420, 160–167.  https://doi.org/10.1016/j.scitotenv.2011.12.011.CrossRefGoogle Scholar
  23. Kümmerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere, 45(6–7), 957–969.  https://doi.org/10.1016/S0045-6535(01)00144-8.CrossRefGoogle Scholar
  24. Kümmerer, K., Steger-Hartmann, T., & Meyer, M. (1997). Biodegradability of the anti-tumour agent ifosfamide and its occurrence in hospital effluents and communal sewage. Water Research, 31(11), 2705–2710.  https://doi.org/10.1016/S0043-1354(97)00121-8.CrossRefGoogle Scholar
  25. Kümmerer, K., Al-Ahmad, A., & Mersch-Sundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere, 40(7), 701–710.  https://doi.org/10.1016/S0045-6535(99)00439-7.CrossRefGoogle Scholar
  26. Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93(2), 671–698.  https://doi.org/10.1021/cr00018a003.CrossRefGoogle Scholar
  27. Li, X., Zhang, G., & Pan, H. (2012). Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode. Journal of Hazardous Materials, 199–200, 255–261.  https://doi.org/10.1016/j.jhazmat.2011.11.006.CrossRefGoogle Scholar
  28. Mackuľak, T., Birošová, L., Gál, M., Bodík, I., Grabic, R., Ryba, J., & Škubák, J. (2016). Wastewater analysis: the mean of the monitoring of frequently prescribed pharmaceuticals in Slovakia. Environmental Monitoring and Assessment, 188(1), 18.  https://doi.org/10.1007/s10661-015-5011-7.CrossRefGoogle Scholar
  29. Montgomery, D. C. (2013). Design and analysis of experiments eighth edition.Google Scholar
  30. Naves, F. L., de Paula, T. I., Balestrassi, P. P., Moreira Braga, W. L., Sawhney, R. S., & de Paiva, A. P. (2017). Multivariate normal boundary intersection based on rotated factor scores: a multiobjective optimization method for methyl orange treatment. Journal of Cleaner Production, 143(January 2017), 413–439.  https://doi.org/10.1016/j.jclepro.2016.12.092.CrossRefGoogle Scholar
  31. Ossowski, T., Pipka, P., Liwo, A., & Jeziorek, D. (2000). Electrochemical and UV-spectrophotometric study of oxygen and superoxide anion radical interaction with anthraquinone derivatives and their radical anions. Electrochimica Acta, 45(21), 3581–3587.  https://doi.org/10.1016/S0013-4686(00)00479-5.CrossRefGoogle Scholar
  32. Penn, R., Friedler, E., & Ostfeld, A. (2013). Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems. Water Research, 47(15), 5911–5920.  https://doi.org/10.1016/j.watres.2013.07.012.CrossRefGoogle Scholar
  33. Pérez, T., Sirés, I., Brillas, E., & Nava, J. L. (2017). Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate medium, 228, 45–56.  https://doi.org/10.1016/j.electacta.2017.01.047.
  34. Qu, R., Xu, B., Meng, L., Wang, L., & Wang, Z. (2015a). Ozonation of indigo enhanced by carboxylated carbon nanotubes: performance optimization, degradation products, reaction mechanism and toxicity evaluation. Water Research, 68, 316–327.  https://doi.org/10.1016/j.watres.2014.10.017.CrossRefGoogle Scholar
  35. Qu, R., Xu, B., Meng, L., Wang, L., & Wang, Z. (2015b). Corrigendum to “Ozonation of indigo enhanced bycarboxylated carbon nanotubes: performance optimization, degradation products, catalytic mechanism and toxicity evaluation” [Water Res. 68 (2014) 316–327] doi:  https://doi.org/10.1016/j.watres.2014.10.017. Water Research, 70(495).  https://doi.org/10.1016/j.watres.2014.12.045.
  36. Quero-Pastor, M., Valenzuela, A., Quiroga, J. M., & Acevedo, A. (2014). Degradation of drugs in water with advanced oxidation processes and ozone. Journal of Environmental Management, 137, 197–203.  https://doi.org/10.1016/j.jenvman.2014.02.011.CrossRefGoogle Scholar
  37. Sakkas, V. a., Islam, M. A., Stalikas, C., & Albanis, T. a. (2010). Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. Journal of Hazardous Materials, 175(1–3), 33–44.  https://doi.org/10.1016/j.jhazmat.2009.10.050.CrossRefGoogle Scholar
  38. Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95.  https://doi.org/10.1016/j.jhazmat.2009.10.100.CrossRefGoogle Scholar
  39. Silva, L. M. D. A., Franco, D. V., Forti, J. C., Jardim, W. F., & Boodts, J. F. C. (2006). Characterisation of a laboratory electrochemical ozonation system and its application in advanced oxidation processes. Journal of Applied Electrochemistry, 36(5), 523–530.  https://doi.org/10.1007/s10800-005-9067-x.CrossRefGoogle Scholar
  40. Skoumal, M., Rodríguez, R. M., Cabot, P. L., Centellas, F., Garrido, J. A., Arias, C., & Brillas, E. (2009). Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochimica Acta, 54(7), 2077–2085.  https://doi.org/10.1016/j.electacta.2008.07.014.CrossRefGoogle Scholar
  41. Standard Methods for the Examination of Water and Wastewater. (2012). Standard methods (20th ed.).  https://doi.org/10.2105/AJPH.51.6.940-a.Google Scholar
  42. Svorc, L., Sochr, J., Tomcik, P., Rievaj, M., & Bustin, D. (2012). Simultaneous determination of paracetamol and penicillin v by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochimica Acta, 68, 227–234.  https://doi.org/10.1016/j.electacta.2012.02.071.CrossRefGoogle Scholar
  43. Sweetapple, C., Fu, G., & Butler, D. (2014). Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Research, 55(0), 52–62. doi: https://doi.org/10.1016/j.watres.2014.02.018.
  44. Tang, Q., Jiang, W., Zhang, Y., Wei, W., & Lim, T. M. (2009). Degradation of azo dye acid red 88 by gas phase dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 29(4), 291–305.  https://doi.org/10.1007/s11090-009-9181-3.CrossRefGoogle Scholar
  45. Ternes, T. A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., & Teiser, B. (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 37(8), 1976–1982.  https://doi.org/10.1016/S0043-1354(02)00570-5.CrossRefGoogle Scholar
  46. Trovó, A. G., Pupo Nogueira, R. F., Aguera, A., Fernandez-Alba, A. R., & Malato, S. (2011). Degradation of the antibiotic amoxicillin by photo-Fenton process—chemical and toxicological assessment. Water Research, 45(3), 1394–1402.  https://doi.org/10.1016/j.watres.2010.10.029.CrossRefGoogle Scholar
  47. Walter, M. V., & Vennes, J. W. (1985). Occurrence of multiple-antibiotic-resistant enteric bacteria in domestic sewage and oxidation lagoons. Applied and Environmental Microbiology, 50(4), 930–933.Google Scholar
  48. Wang, B., Wu, Y., Jiang, B., Song, H., Li, W., Jiang, Y., Wang, C., Sun, L., Li, Q., & Li, A. (2016). Optimized degradation removal of 2-nitrotoluene by combination of cathodic reduction and electro-oxidation process. Electrochimica Acta, 219, 509–515.  https://doi.org/10.1016/j.electacta.2016.10.001.CrossRefGoogle Scholar
  49. Westerhoff, P., Yoon, Y., Snyder, S., & Wert, E. (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology, 39(17), 6649–6663.  https://doi.org/10.1021/es0484799.CrossRefGoogle Scholar
  50. Yang, Y., Guo, H., Zhang, Y., Deng, Q., & Zhang, J. (2016). Degradation of bisphenol A using ozone/persulfate process: kinetics and mechanism. Water, Air, & Soil Pollution, 227(2), 53.  https://doi.org/10.1007/s11270-016-2746-x.CrossRefGoogle Scholar
  51. Yu, W., Yang, J., Shi, Y., Song, J., Shi, Y., Xiao, J., Li, C., Xu, X., He, S., Liang, S., Wu, X., & Hu, J. (2016). Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime. Water Research, 95, 124–133.  https://doi.org/10.1016/j.watres.2016.03.016.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Deberton Moura
    • 1
  • Vithor Barcelos
    • 1
  • Gisella Rossana Lamas Samanamud
    • 2
  • Alexandre Boscaro França
    • 1
  • Renata Lofrano
    • 1
  • Carla Cristina Almeida Loures
    • 3
  • Luzia Lima Rezende Naves
    • 4
  • Mateus Souza Amaral
    • 5
  • Fabiano Luiz Naves
    • 1
  1. 1.Chemical Engineering and Statistics DepartmentFederal University of São João Del ReiSão João Del ReiBrazil
  2. 2.Department of Civil and Environmental EngineeringUniversity of Texas at San Antonio, UTSASan AntonioUSA
  3. 3.Department of Mechanical Engineering (DEPMC)Federal Center for Technological EducationAngra dos ReisBrazil
  4. 4.University Center of Lavras, UNILAVRASLavrasBrazil
  5. 5.Departamento de Chemical EngineeringRoseira CollegeRoseiraBrazil

Personalised recommendations