Analysis of flood inundation in ungauged basins based on multi-source remote sensing data

Article
  • 24 Downloads

Abstract

Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

Keywords

Flood disaster Inundation Remote sensing monitoring Ungauged basins 

References

  1. Ahamed, A., & Bolten, J. D. (2017). A MODIS-based automated flood monitoring system for southeast asia. International Journal of Applied Earth Observation and Geoinformation, 61, 104–117.  https://doi.org/10.1016/j.jag.2017.05.006 CrossRefGoogle Scholar
  2. Aronica, G. T., Candela, A., Fabio, P., & Santoro, M. (2012). Estimation of flood inundation probabilities using global hazard indexes based on hydrodynamic variables. Physics and Chemistry of the Earth, 42-44, 119–129.  https://doi.org/10.1016/j.pce.2011.04.001 CrossRefGoogle Scholar
  3. Awadallah, A. G., & Tabet, D. (2015). Estimating flooding extent at high return period for ungauged braided systems using remote sensing: a case study of Cuvelai Basin, Angola. Natural Hazards, 77(1), 255–272.  https://doi.org/10.1007/s11069-015-1600-6 CrossRefGoogle Scholar
  4. Calkoen, C. J., Hesselmans, G. H. F. M., Wensink, G. J., & Vogelzang, J. (2001). The bathymetry assessment system: efficient depth mapping in shallow seas using radar images. International Journal of Remote Sensing, 22(15), 2973–2998.  https://doi.org/10.1080/01431160116928 CrossRefGoogle Scholar
  5. Du, X. P., Guo, H. D., Fan, X. T., Zhu, J. J., Yan, Z. Z., Zhan, Q. & Sun Z. C. (2012). Flood modeling and inundation risk evaluation using remote sensing imagery in coastal zone of China. Geoscience and Remote Sensing Symposium (IGARSS), 2012 I.E. International.Google Scholar
  6. Huang, S. F., Chen, D. Q., Li, X. T., Sun, T., Li, J. G., & Xu, M. (2012). Methods and practice of remote sensing monitoring and evaluation of flood disaster. Beijing: China Water & Power Press.Google Scholar
  7. Huang, T., Shi, Q. S., Shi, Q. D., & Anayeti, A. (2013). Validate classification precision of low spatial resolution remote sensing data by using high spatial resolution data. Journal of Xinjiang University, 30(2), 238–242.Google Scholar
  8. Huang, C., Chen, Y., & Wu, J. P. (2014). Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 26, 350–362.  https://doi.org/10.1016/j.jag.2013.09.002 CrossRefGoogle Scholar
  9. Huang, X. D., Wang, J. F., & Shang, J. L. (2016). An adaptive two-component model-based decomposition on soil moisture estimation for C-band RADARSAT-2 imagery over agricultural fields. Geoscience and Remote Sensing Letters, IEEE, 13(3), 414–418.Google Scholar
  10. Khan, S. I., Hong, Y., Wang, J. H., Yilmaz, K. K., Gourley, J. J., Adler, R. F., Brakenridge, G. R., Policelli, F., Habib, S., & Irwin, D. (2011). Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria Basin: implications for hydrologic prediction in ungauged basins. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 85–95.  https://doi.org/10.1109/TGRS.2010.2057513 CrossRefGoogle Scholar
  11. Li, J. X., Li, C. K., & Yin, Z. H. (2013). ArcGIS based on Kriging interpolation method and its application. Bulletin of Surveying and Mapping, 9, 87–90.Google Scholar
  12. Li, J. L., Cao, L. D., & Pu, R. L. (2014). Progresses on monitoring and assessment of flood disaster in remote sensing. Shuili Xuebao, 45(3), 253–260.Google Scholar
  13. Liang, L., Di, L. P., Zhang, L. P., Deng, M. X., Qin, Z. H., Zhao, S. H., & Lin, H. (2015). Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165(8), 123–134.  https://doi.org/10.1016/j.rse.2015.04.032 CrossRefGoogle Scholar
  14. Liang, L., Qin, Z. H., Zhao, S. H., Di, L. P., Zhang, C., Deng, M. X., Lin, H., Zhang, L. P., Wang, L. J., & Liu, Z. X. (2016). Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. International Journal of Remote Sensing, 37(13), 2923–2949.  https://doi.org/10.1080/01431161.2016.1186850 CrossRefGoogle Scholar
  15. Liu, M. L., Tang, X. M., & Liu, J. Y. (2001). Research on scaling effect based on 1km grid cell data. Journal of Remote Sensing, 5(3), 183–190.Google Scholar
  16. Matgen, P., Schumann, G., Henry, J. B., Hoffmann, L., & Pfister, L. (2007). Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. International Journal of Applied Earth Observation and Geoinformation, 9(3), 247–263.  https://doi.org/10.1016/j.jag.2006.03.003 CrossRefGoogle Scholar
  17. McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.  https://doi.org/10.1080/01431169608948714 CrossRefGoogle Scholar
  18. Nakmuenwai, P., Yamazaki, F., & Liu, W. (2017). Automated extraction of inundated areas from multi-temporal dual-polarization RADARSAT-2 images of the 2011 central Thailand flood. Remote Sensing, 9(1), 78.  https://doi.org/10.3390/rs9010078 CrossRefGoogle Scholar
  19. Nigro, J., Slayback, D., Policelli, F., & Brakenridge, G. R. (2014). NASA/DFO MODIS near real-time (NRT) global flood mapping product evaluation of flood and permanent water detection.Google Scholar
  20. Papa, F., Prigent, C., & Rossow, W. B. (2008). Monitoring flood and discharge variations in the large Siberian rivers from a multi-satellite technique. Surveys in Geophysics, 29(4-5), 297–317.  https://doi.org/10.1007/s10712-008-9036-0 CrossRefGoogle Scholar
  21. Plate, E. J. (2002). Flood risk and flood management. Journal of Hydrology, 267(1-2), 2–11.  https://doi.org/10.1016/S0022-1694(02)00135-X CrossRefGoogle Scholar
  22. Powell, S. J., Jakeman, A., & Croke, B. (2014). Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands? Ecological Indicators, 45, 486–493.  https://doi.org/10.1016/j.ecolind.2014.05.009 CrossRefGoogle Scholar
  23. Qian, X. J., Liang, L., Shen, Q., Sun, Q., Zhang, L. P., Liu, Z. X., Zhao, S. H., & Qin, Z. H. (2016). Drought trends based on the VCI and its correlation with climate factors in the agricultural areas of china from 1982 to 2010. Environmental Monitoring and Assessment, 188(11), 639.  https://doi.org/10.1007/s10661-016-5657-9 CrossRefGoogle Scholar
  24. Sandidge, J. C., & Holyer, R. J. (1998). Coastal bathymetry from hyperspectral observations of water radiance. Remote Sensing of Environment, 65(3), 341–352.  https://doi.org/10.1016/S0034-4257(98)00043-1 CrossRefGoogle Scholar
  25. Shen, Q., Liang, L., Luo, X., Li, Y. J., & Zhang, L. P. (2017). Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010. Environmental Monitoring and Assessment, 189(9), 471.  https://doi.org/10.1007/s10661-017-6187-9 CrossRefGoogle Scholar
  26. Tsakiris, G. (2014). Flood risk assessment: concepts, modelling, applications. Natural Hazards and Earth System Science, 2, 261–286.Google Scholar
  27. Wolski, P., Murray-Hudson, M., Thito, K., & Cassidy, L. (2017). Keeping it simple: monitoring flood extent in large data-poor wetlands using MODIS SWIR data. International Journal of Applied Earth Observation and Geoinformation, 57, 224–234.  https://doi.org/10.1016/j.jag.2017.01.005 CrossRefGoogle Scholar
  28. Xu, H. Q. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.  https://doi.org/10.1080/01431160600589179 CrossRefGoogle Scholar
  29. Yi, Y. H., Chen, X. W., & Wu, H. (2005). An algorithm for inundated depth calculation of flood based on remotely sensed data. Geography and Geo-Information Science, 21(3), 26–29.Google Scholar
  30. Zeng, L. F., Li, L., & Wang, L. H. (2015). SAR-based fast flood mapping using Sentinel-1 imagery. Geomatics World, 22(5), 100–107.Google Scholar
  31. Zhang, Q. X., & Wang, Y. C. (2009). Development and application of two dimensional unsteady flood routing model. Water resources and Hydropower Engineering, 40(3), 62–65.Google Scholar
  32. Zhang, H. B., Li, J. S., Xiang, N. P., Shen, Q., & Zhang, F. F. (2015). A study of extracting water bodies automatically based on the MODIS surface reflectance data. Remote Sensing Technology and Application, 30(6), 1160–1167.Google Scholar
  33. Zhao, S. L., Wang, J. P., & Wang, Y. F. (2016). A research on defining the water depth in Cuochuolong Lake retrieval from OLI image. Journal of Salt Lake Research, 24(1), 8–14.Google Scholar
  34. Zwenzner, H., & Voigt, S. (2009). Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrology and Earth System Sciences, 13(5), 567–576.  https://doi.org/10.5194/hess-13-567-2009 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Information EngineeringChina University of GeosciencesWuhanChina
  2. 2.Wuhan Regional Climate CentreWuhanChina

Personalised recommendations