Advertisement

Integrating direct observation and GPS tracking to monitor animal behavior for resource management

  • Chelsey Walden-Schreiner
  • Yu-Fai Leung
  • Tim Kuhn
  • Todd Newburger
Article
  • 226 Downloads

Abstract

Monitoring the behavior of pack animals in protected areas informs management about use patterns and the potential associated negative impacts. However, systematic assessments of behavior are uncommon due to methodological and logistical constraints. This study integrated behavior mapping with GPS tracking, and applied behavior change point analysis, as an approach to monitor the behaviors of pack animals during overnight periods. The integrated approach identified multiple grazing patterns (i.e., locally intense grazing, ambulatory grazing) not feasible through a single methodology alone. Monitoring behavior and corresponding environmental conditions aid managers in implementing strategies designed to mitigate impacts associated with pack animals in natural areas. Results also contrast the influence of temporal scale on behavior segmentation to inform decisions for further monitoring and management of domestic animal use and impacts in natural areas. This integrated approach reduced time and logistical constraints of each method individually to promote ongoing monitoring and highlight how multiple management tactics could reduce impacts to sensitive habitats.

Keywords

Behavior change point analysis (BCPA) Grazing Horse Mule Yosemite national park 

Notes

Acknowledgements

The USDI National Park Service supported this work under the Cooperative Ecosystem Studies Unit Task Agreement P14AC01493.

The authors thank collaborators who provided time and expertise to this project, including NPS Resources Management and Science staff L. Austin, E. Babich, J. Baccei, M. Booher, A. Dickenson, L. Jones, M. Marschall, L. Mazzu, and A. Puchkoff; NPS Wranglers T. Bernacchi, R. Colflesh, and R. Fredy; S. Ostoja from the USGS/USFS; and D. Johnson, G. Alexander, and A. Day from Oregon State University. From North Carolina State University, we thank L. Tateosian, T. Wentworth, and S. Nelson for their input on the analysis and reviews of the manuscript, and R. Kays for his feedback on analytical approaches for movement data. Finally, thank you to the peer reviewers whose comments improved the overall manuscript.

Compliance with ethical standards

All applicable international, national, and institutional guidelines (e.g., Institutional Animal Care and Use Committee (IACUC)) for the care and use of animals were followed.

Supplementary material

10661_2018_6463_MOESM1_ESM.docx (1 mb)
Online Resource 1 (DOCX 1070 kb)

References

  1. Avgar, T., Mosser, A., Brown, G. S., & Fryxell, J. M. (2013). Environmental and individual drivers of animal movement patterns across a wide geographical gradient. Journal of Animal Ecology, 82(1), 96–106.  https://doi.org/10.1111/j.1365-2656.2012.02035.x.CrossRefGoogle Scholar
  2. Bailey, D. W., & Brown, J. R. (2011). Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands. Rangeland Ecology & Management, 64(1), 1–9.  https://doi.org/10.2111/REM-D-09-00184.1.CrossRefGoogle Scholar
  3. Ballenger, L., Wilkin, K., Acree, L., Baccei, J., Whittaker, T., & Babich, E. (2011). 2010 assessment of meadows in the Merced River corridor, Yosemite National Park. El Portal: USDI National Park Service.Google Scholar
  4. Balmford, A., Green, J. M. H., Anderson, M., Beresford, J., Huang, C., Naidoo, R., Walpole, M., & Manica, A. (2015). Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biology, 13(2), e1002074.  https://doi.org/10.1371/journal.pbio.1002074.CrossRefGoogle Scholar
  5. Barros, A., & Pickering, C. M. (2015). Impacts of experimental trampling by hikers and pack animals on a high-altitude alpine sedge meadow in the Andes. Plant Ecology & Diversity, 8(2), 265–276.  https://doi.org/10.1080/17550874.2014.893592.CrossRefGoogle Scholar
  6. Barros, A., Monz, C., & Pickering, C. (2015). Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research. Ambio, 44(2), 82–98.  https://doi.org/10.1007/s13280-014-0550-7.CrossRefGoogle Scholar
  7. Bejder, L., Samuels, A., Whitehead, H., & Gales, N. (2006). Interpreting short-term behavioural responses to disturbance within a longitudinal perspective. Animal Behaviour, 72(5), 1149–1158.  https://doi.org/10.1016/j.anbehav.2006.04.003.CrossRefGoogle Scholar
  8. Berger-Tal, O., Blumstein, D. T., Carroll, S., Fisher, R. N., Mesnick, S. L., Owen, M. A., Saltz, D., St. Claire, C. C., & Swaisgood, R. R. (2016). A systematic survey of the integration of animal behavior into conservation. Conservation Biology, 30(4), 744–753.  https://doi.org/10.1111/cobi.12654.CrossRefGoogle Scholar
  9. Börger, L. (2016). Stuck in motion? Reconnecting questions and tools in movement ecology. Journal of Animal Ecology, 85(1), 5–10.  https://doi.org/10.1111/1365-2656.12464.CrossRefGoogle Scholar
  10. Byers, A. C. (2009). A comparative study of tourism impacts on alpine ecosystems in the Sagarmatha (Mt. Everest) National Park, Nepal and the Huascaran National Park, Peru. In J. Hill & T. Gale (Eds.), Ecotourism and environmental sustainability: principles and practice (pp. 51–72). London: Routledge.Google Scholar
  11. Cagnacci, F., Boitani, L., Powell, R. A., & Boyce, M. S. (2010). Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society: Series B, Biological Sciences, 365(1550), 2157–2162.  https://doi.org/10.1098/rstb.2010.0107.CrossRefGoogle Scholar
  12. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 489(7415), 326–326.  https://doi.org/10.1038/nature11373.CrossRefGoogle Scholar
  13. Chape, S., Harrison, J., Spalding, M., & Lysenko, I. (2005). Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1454), 443–455.  https://doi.org/10.1098/rstb.2004.1592.CrossRefGoogle Scholar
  14. Chave, J. (2013). The problem of pattern and scale in ecology: what have we learned in 20 years? Ecology Letters, 16, 4–16.  https://doi.org/10.1111/ele.12048.CrossRefGoogle Scholar
  15. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026.  https://doi.org/10.1126/science.1206432.CrossRefGoogle Scholar
  16. Cole, D. N., & Monz, C. A. (2004). Impacts of camping on vegetation: response and recovery following acute and chronic disturbance. Environmental Management, 32, 693–705.CrossRefGoogle Scholar
  17. Edelhoff, H., Signer, J., & Balkenhol, N. (2016). Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Movement Ecology, 4, 1–21.CrossRefGoogle Scholar
  18. Foster-Smith, J., & Evans, S. M. (2003). The value of marine ecological data collected by volunteers. Biological Conservation, 113(2), 199–213.  https://doi.org/10.1016/S0006-3207(02)00373-7.CrossRefGoogle Scholar
  19. Fryxell, J. M., Hazell, M., Börger, L., Dalziel, B. D., Haydon, D. T., Morales, J. M., McIntosh, T., & Rosatte, R. C. (2008). Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19114–19119.  https://doi.org/10.1073/pnas.0801737105.CrossRefGoogle Scholar
  20. Geneletti, D., & Dawa, D. (2009). Environmental impact assessment of mountain tourism in developing regions: a study in Ladakh, Indian Himalaya. Environmental Impact Assessment Review, 29(4), 229–242.  https://doi.org/10.1016/j.eiar.2009.01.003.CrossRefGoogle Scholar
  21. Gurarie, E., & Ovaskainen, O. (2011). Characteristic spatial and temporal scales unify models of animal movement. The American Naturalist, 178(1), 113–123.  https://doi.org/10.1086/660285.CrossRefGoogle Scholar
  22. Gurarie, E., Andrews, R. D., & Laidre, K. L. (2009). A novel method for identifying behavioural changes in animal movement data. Ecology Letters, 12(5), 395–408.  https://doi.org/10.1111/j.1461-0248.2009.01293.x.CrossRefGoogle Scholar
  23. Gurarie, E., Bracis, C., Delgado, M., Meckley, T. D., Kojola, I., & Wagner, C. M. (2016). What is the animal doing? Tools for exploring behavioural structure in animal movements. The Journal of Animal Ecology, 85(1), 69–84.  https://doi.org/10.1111/1365-2656.12379.CrossRefGoogle Scholar
  24. Hammitt, W. E., Cole, D. N., & Monz, C. (2015). Wildland recreation: ecology and management (3rd ed.). Chichester: Wiley Blackwell.Google Scholar
  25. Hebblewhite, M., & Haydon, D. T. (2010). Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1550), 2303–2312.  https://doi.org/10.1098/rstb.2010.0087.CrossRefGoogle Scholar
  26. Hoehner, C. M., Brownson, R. C., Allen, D., Gramann, J., Behrens, T. K., Floyd, M. F., Leahy, J., Liddle, J. B., Smaldone, D., Spain, D. D., Tardona, D. R., Ruthmann, N. P., Seiler, R. L., & Yount, B. W. (2010). Parks promoting physical activity: synthesis of findings from interventions in seven national parks. Journal of Physical Activity and Health, 7(s1), S67–S81.  https://doi.org/10.1123/jpah.7.s1.s67.CrossRefGoogle Scholar
  27. Homburger, H., Schneider, M. K., Hilfiker, S., & Lüscher, A. (2014). Inferring behavioral states of grazing livestock from high-frequency position data alone. PLoS One, 9(12), e114522.  https://doi.org/10.1371/journal.pone.0114522.CrossRefGoogle Scholar
  28. Huang, T.-C., Huang, Y.-J., & Lin, W.-C. (2013). Real-time horse gait synthesis. Computer Animation & Virtual Worlds, 24, 87–95.  https://doi.org/10.1002/cav.1469.
  29. Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348, aaa2478-1–aaa2478-9.CrossRefGoogle Scholar
  30. Kuhn, T., Ballenger, L., Scherer, R., & Williams, J. N. (2015). Data analysis and assessment of high elevation wilderness meadows surveyed from 2008 to 2011, Yosemite National Park Resources Management and Science. Fort Collins: USDI National Park Service.Google Scholar
  31. Laube, P., & Purves, R. S. (2006). An approach to evaluating motion pattern detection techniques in spatio-temporal data. Computers, Environment and Urban Systems, 30(3), 347–374.  https://doi.org/10.1016/j.compenvurbsys.2005.09.001.CrossRefGoogle Scholar
  32. Laube, P., & Purves, R. S. (2011). How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS, 15(3), 401–418.  https://doi.org/10.1111/j.1467-9671.2011.01256.x.CrossRefGoogle Scholar
  33. Levin, S. A. (1992). The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology, 73(6), 1943–1967.  https://doi.org/10.2307/1941447.CrossRefGoogle Scholar
  34. Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L., & Shine, R. (2013). Rapid shifts in dispersal behavior on an expanding range edge. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13452–13456.  https://doi.org/10.1073/pnas.1303157110.CrossRefGoogle Scholar
  35. Löttker, P., Rummel, A., Traube, M., Stache, A., Šustr, P., Müller, J., & Heurich, M. (2009). New possibilities of observing animal behaviour from a distance using activity sensors in GPS-collars: an attempt to calibrate remotely collected activity data with direct behavioural observations in red deer Cervus elaphus. Wildlife Biology, 15(4), 425–434.  https://doi.org/10.2981/08-014.CrossRefGoogle Scholar
  36. McClaran, M. P., & Cole, D. N. (1993). Packstock in wilderness: use, impacts, monitoring, and management. Ogden: USDA Forest Service.CrossRefGoogle Scholar
  37. McClintock, B. T., Johnson, D. S., Hooten, M. B., Ver Hoef, J. M., & Morales, J. M. (2014). When to be discrete: the importance of time formulation in understanding animal movement. Movement Ecology, 2, 1–14.CrossRefGoogle Scholar
  38. McDonnell, S. M. (2003). The equid ethogram: a practical field guide to horse behavior. Lexington: Eclipse Press.Google Scholar
  39. Mills, D. S., & McDonald, S. (2005). The domestic horse: the origins, development and management of its behavior. Cambridge: Cambridge University Press.Google Scholar
  40. Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C., & Beissinger, S. R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322(5899), 261–264.  https://doi.org/10.1126/science.1163428.CrossRefGoogle Scholar
  41. Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19052–19059.  https://doi.org/10.1073/pnas.0800375105.CrossRefGoogle Scholar
  42. Olson-Rutz, K. M., Marlow, C. B., Hansen, K., Gagnon, L. C., & Rossi, R. J. (1996). Packhorse grazing behavior and immediate impact on a timberline meadow. Journal of Range Management, 49(6), 546–550.  https://doi.org/10.2307/4002297.CrossRefGoogle Scholar
  43. Ostoja, S. M., Brooks, M. L., Moore, P. E., Berlow, E., Blank, R., Roche, J., Chase, J., & Haultain, S. (2014). Potential environmental effects of pack stock on meadow ecosystems of the Sierra Nevada, USA. The Rangeland Journal, 36(5), 411–427.  https://doi.org/10.1071/RJ14050.CrossRefGoogle Scholar
  44. Patterson, T. A., Basson, M., Bravington, M. V., & Gunn, J. S. (2009). Classifying movement behaviour in relation to environmental conditions using hidden Markov models. The Journal of Animal Ecology, 78(6), 1113–1123.  https://doi.org/10.1111/j.1365-2656.2009.01583.x.CrossRefGoogle Scholar
  45. Postlethwaite, C. M., & Dennis, T. E. (2013). Effects of temporal resolution on an inferential model of animal movement. PLoS One, 8, 1–12.CrossRefGoogle Scholar
  46. Postlethwaite, C. M., Brown, P., & Dennis, T. E. (2013). A new multi-scale measure for analysing animal movement data. Journal of Theoretical Biology, 317, 175–185.  https://doi.org/10.1016/j.jtbi.2012.10.007.CrossRefGoogle Scholar
  47. Purves, R. S., Laube, P., Buchin, M., & Speckmann, B. (2014). Moving beyond the point: an agenda for research in movement analysis with real data. Computers, Environment and Urban Systems, 47, 1–4.  https://doi.org/10.1016/j.compenvurbsys.2014.06.003.CrossRefGoogle Scholar
  48. Ransom, J. I., & Cade, B. S. (2009). Quantifying equid behavior: a research ethogram for free-roaming feral horses. Reston: US Geological Survey.Google Scholar
  49. Rutter, S. M. (2007). The integration of GPS, vegetation mapping and GIS in ecological and behavioral studies. Revista Brasileira de Zootecnia, 36(suppl), 63–70.  https://doi.org/10.1590/S1516-35982007001000007.CrossRefGoogle Scholar
  50. USDI NPS. (2017). National Park Service Visitor Use Statistics—Yosemite NP. https://irma.nps.gov/Stats/SSRSReports/ParkSpecificReports/AnnualParkRecreationVisitation(1904-LastCalendarYear)?Park=YOSE. Accessed 25 July 2017.
  51. Viers, J. H., Purdy, S. E., Peek, R. A., Fryjoff-Hung, A., Santos, N. R., Katz, J. V. E., Emmons, J. D., Dolan, D. V., & Yarnell, S. M. (2013). Montane meadows in the sierra nevada: changing hydroclimatic conditions and concepts for vulnerability assessment. Davis: UC Davis, Center for Watershed Science.Google Scholar
  52. Walden-Schreiner, C., & Leung, Y.-F. (2013). Spatially characterizing visitor use and its association with informal trails in Yosemite Valley meadows. Environmental Management, 52(1), 163–178.  https://doi.org/10.1007/s00267-013-0066-0.CrossRefGoogle Scholar
  53. Walden-Schreiner, C., Leung, Y.-F., Kuhn, T., Newburger, T., & Tsai, W.-L. (2017). Environmental and managerial factors associated with pack stock distribution in high elevation meadows: case study from Yosemite National Park. Journal of Environmental Management, 193, 52–63.  https://doi.org/10.1016/j.jenvman.2017.01.076.CrossRefGoogle Scholar
  54. Watson, J. E. M., Dudley, N., Segan, D. B., & Hockings, M. (2014). The performance and potential of protected areas. Nature, 515(7525), 67–73.  https://doi.org/10.1038/nature13947.CrossRefGoogle Scholar
  55. Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3(4), 385–397.  https://doi.org/10.2307/2389612.CrossRefGoogle Scholar
  56. Williams, D. M., Dechen Quinn, A., & Porter, W. F. (2012). Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis. PLoS One, 7(11), e48439.  https://doi.org/10.1371/journal.pone.0048439.CrossRefGoogle Scholar
  57. Zhang, J., O’Reilly, K. M., Perry, G. L. W., Taylor, G. A., & Dennis, T. E. (2015). Extending the functionality of behavioural change-point analysis with k-means clustering: a case study with the little penguin (Eudyptula minor). PLoS One, 10(4), e0122811.  https://doi.org/10.1371/journal.pone.0122811.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Parks, Recreation, and Tourism ManagementNorth Carolina State UniversityRaleighUSA
  2. 2.Division of Resources Management and ScienceU.S. National Park Service, Yosemite National ParkEl PortalUSA

Personalised recommendations