Skip to main content

Advertisement

Log in

Concentrations of select dissolved trace elements and anthropogenic organic compounds in the Mississippi River and major tributaries during the summer of 2012 and 2013

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Mississippi River drainage basin includes the Illinois, Missouri, Ohio, Tennessee, and Arkansas rivers. These rivers drain areas with different physiography, population centers, and land use, with each contributing a different suites of metals and wastewater contaminants that can affect water quality. In July 2012, we determined 18 elements (Be, Rb, Sr, Cd, Cs, Ba, Tl, Pb, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) and chlorophyll-a (Chl-a) in the five major tributaries and in the Upper Mississippi River. The following summer, we determined both trace elements and 25 trace organic compounds at 10 sites in a longitudinal study of the main stem of the Mississippi River from Grafton, Illinois to Natchez, Mississippi. We detected wastewater contaminants, including pharmaceuticals and endocrine disrupting compounds, throughout the river system, with the highest concentrations occurring near urban centers (St. Louis and Memphis). Concentrations were highest for atrazine (673 ng L−1), DEET (540 ng L−1), TCPP (231 ng L−1), and caffeine (202 ng L−1). The Illinois, Missouri, and Yazoo rivers, which drain areas with intense agriculture, had relatively high concentrations of Chl-a and atrazine. However, the Ohio River delivered higher loads of contaminants to the Mississippi River, including an estimated 177 kg day−1 of atrazine, due to higher flow volumes. Concentrations of heavy metals (Ni, V, Co, Cu, Cd, and Zn) were relatively high in the Illinois River and low in the Ohio River, although dissolved metal concentrations were below US EPA maximum contaminant levels for surface water. Multivariate analysis demonstrated that the rivers can be distinguished based on elemental and contaminant profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andresen, J., Grundmann, A., & Bester, K. (2004). Organophosphorus flame retardants and plasticisers in surface waters. Science of the Total Environment, 332, 155–166.

    Article  CAS  Google Scholar 

  • Anumol, T., & Snyder, S. A. (2015). Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Talanta, 132, 77–86.

    Article  CAS  Google Scholar 

  • Anumol, T., Wu, S., Marques dos Santos, M., Daniels, K. D., & Snyder, S. A. (2015). Rapid direct injection LC-MS/MS method for analysis of prioritized indicator compounds in wastewater effluent. Environmental Science: Water Resource Technology, 1, 632–643.

    CAS  Google Scholar 

  • Aronson, D., Weeks, J., Meylan, B., Guiney, P. D., & Howard, P. H. (2012). Environmental release, environmental concentrations, and ecological risk of N,N-diethyl-m-toluamide (DEET). Integrated Environmental Assessment and Management, 8, 135–166.

    Article  CAS  Google Scholar 

  • Bartelt-Hunt, S. L., Snow, D. D., Damon, T., Shockley, J., & Hoagland, K. (2009). The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution, 157(3), 786–791.

    Article  CAS  Google Scholar 

  • Bonansea, R. I., Amé, M. V., & Wunderlin, D. A. (2013). Determination of priority pesticides in water samples combining SPE and SPME coupled to GC–MS. A case study: Suquía River basin (Argentina). Chemosphere, 90(6), 1860–1869.

    Article  CAS  Google Scholar 

  • Boyd, G. R., Palmeri, J. M., Zhang, S., & Grimm, D. A. (2004). Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Science of the Total Environment, 333(1), 137–148.

    Article  CAS  Google Scholar 

  • Brown, A. V., Brown, K. B., Jackson, D. C., & Pierson, W. K. (2005). Lower Mississippi River and its tributaries. In A. C. Benke & C. E. Cushing (Eds.), Rivers of North America (pp. 231–281). Amsterdam: Elsevier.

    Google Scholar 

  • Buck S, Denton G, Dodds W, Fisher J, Flemer D, Hart D, Parker A, Porter S, Rector S, & Steinman A (2000) Nutrient criteria technical guidance manual: rivers and streams. US Environmental Protection Agency, EPA-822-B00-002

  • Buerge, I.J., Poiger, T., Müller, M.D., Buser, H.-R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37(4), 691–700.

  • Busetti, F., & Heitz, A. (2011). Determination of human and veterinary antibiotics in indirect potable reuse systems. International Journal of Environmental Analytical Chemistry, 91, 989–1012.

    Article  CAS  Google Scholar 

  • Choi, K., Kim, Y., Park, J., Park, C. K., Kim, M., Kim, H. S., & Kim, P. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 405(1), 120–128.

    Article  CAS  Google Scholar 

  • Conley, J. M., Symes, S. J., Kindelberger, S. A., & Richards, S. M. (2008). Rapid liquid chromatography–tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. Journal of Chromatography A, 1185(2), 206–215.

    Article  CAS  Google Scholar 

  • Cwiertny, D. M., Snyder, S. A., Schlenk, D., & Kolodziej, E. P. (2014). Environmental designer drugs: when transformation may not eliminate risk. Environmental Science & Technology, 48, 11737–11745.

    Article  CAS  Google Scholar 

  • Dalton, R. L., Boutin, D., & Pick, F. R. (2015). Determining in situ periphyton community responses to nutrient and atrazine gradients via pigment analysis. Science of the Total Environment, 515, 70–82.

    Article  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 107, 907.

    Article  CAS  Google Scholar 

  • Desbrow, C., Routledge, E., Brighty, G., Sumpter, J., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 32, 1549–1558.

    Article  CAS  Google Scholar 

  • Donna, A., Betta, P., Gagliardi, F., Ghiazza, G., Gallareto, M., & Gabutto, V. (1980). Preliminary experimental contribution to the study of possible carcinogenic activity of two herbicides containing atrazine-simazine and trifuralin as active principles. Pathologica, 73, 707–721.

    Google Scholar 

  • Dsikowitzky, L., Heruwati, E., Ariyani, F., Irianto, H. E., & Schwarzbauer, J. (2014). Exceptionally high concentrations of the insect repellent N, N-diethyl-m-toluamide (DEET) in surface waters from Jakarta, Indonesia. Environmental Chemistry Letters, 12(3), 407–411.

    Article  CAS  Google Scholar 

  • Edwards, D., & Daniel, T. (1993). Runoff quality impacts of swine manure applied to fescue plots. Transactions of the ASAE, 36, 81–86.

    Article  Google Scholar 

  • Edwards, D., Daniel, T., Murdock, J., & Moore, P. (1996). Quality of runoff from four northwest Arkansas pasture fields treated with organic and inorganic fertilizer. Transactions of the ASAE, 39, 1689–1696.

    Article  CAS  Google Scholar 

  • Eghball, B., & Power, J.F. (1999). Phosphorus-and nitrogen-based manure and compost applications corn production and soil phosphorus. Soil Science Society of America Journal, 63(4), 895–901.

  • Eldridge, J. C., Wetzel, L. T., Stevens, J. T., & Simpkins, J. W. (1999). The mammary tumor response in triazine-treated female rats: a threshold-mediated interaction with strain and species-specific reproductive senescence. Steroids, 64, 672–678.

    Article  CAS  Google Scholar 

  • Fernández, C., González-Doncel, M., Pro, J., Carbonell, G., & Tarazona, J. V. (2010). Occurrence of pharmaceutically active compounds in surface waters of the Henares-Jarama-Tajo River system (Madrid, Spain) and a potential risk characterization. Science of the Total Environment, 408(3), 543–551.

    Article  Google Scholar 

  • Fischer, C., Schmidt, C., Bauer, A., Gaupp, R., & Heide, K. (2009). Mineralogical and geochemical alteration of low-grade metamorphic black slates due to oxidative weathering. Chemie der Erde-Geochemistry, 69, 127–142.

    Article  CAS  Google Scholar 

  • Flores, C., Ventura, F., Martin-Alonso, J., & Caixach, J. (2013). Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in NE Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Science of the Total Environment, 461, 618–626.

    Article  Google Scholar 

  • Frances, S. P. (2007). Efficacy and safety of repellents containing DEET. In M. Debboun, S. P. Frances, & D. Strickman (Eds.), Insect repellents: principles, methods, and uses (pp. 311–326). New York: CRC Press.

    Google Scholar 

  • Fries, E., & Püttmann, W. (2001). Occurrence of organophosphate esters in surface water and ground water in Germany. Journal of Environmental Monitoring, 3, 621–626.

    Article  CAS  Google Scholar 

  • Galinaro, C. A., Pereira, F. M., & Vieira, E. M. (2015). Determination of parabens in surface water from Mogi Guaçu River (São Paulo, Brazil) using dispersive liquid-liquid microextraction based on low density solvent and LC-DAD. Journal of the Brazilian Chemical Society, 26(11), 2205–2213.

    CAS  Google Scholar 

  • Gannon, J. E., & Stemberger, R. S. (1978). Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society, 97, 16–35.

    Article  Google Scholar 

  • Garbarino, J. R., Hayes, H. C., Roth, D. A., Antweiler, R. C., Brinton, T. I., & Taylor, H. E. (1996). Heavy metals in the Mississippi River. US Geological Survey, Circular, 53–72.

  • Guo, Y. C., & Krasner, S. W. (2009). Occurrence of primidone, carbamazepine, caffeine, and precursors for N-nitrosodimethylamine in drinking water sources impacted by wastewater. JAWRA Journal of the American Water Resources Association, 45(1), 58–67.

    Article  CAS  Google Scholar 

  • Halden, R. U., & Paull, D. H. (2004). Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry. Environmental Science & Technology, 38(18), 4849–4855.

    Article  CAS  Google Scholar 

  • Harding, L.W., & Perry, E.S. (1997). Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950-1994. Marine Ecology Progress Series, 150, 39–52.

  • Henry, W. M., & Knapp, K. T. (1980). Compound forms of fossil fuel fly ash emissions. Environmental Science & Technology, 14, 450–456.

    Article  CAS  Google Scholar 

  • Hernando, M. D., Mezcua, M., Fernández-Alba, A., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69, 334–342.

    Article  CAS  Google Scholar 

  • Hope, B. K. (1997). An assessment of the global impact of anthropogenic vanadium. Biogeochemistry, 37, 1–13.

    Article  CAS  Google Scholar 

  • Huser, B., Köhler, S., Wilander, A., Johansson, K., & Fölster, J. (2011). Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009). Biogeosciences, 8, 1813–1823.

    Article  CAS  Google Scholar 

  • Jackson, C. R., Millar, J. J., Payne, J. T., & Ochs, C. A. (2014). Free-living and particle-associated bacterioplankton in large rivers of the Mississippi River basin demonstrate biogeographic patterns. Applied and Environmental Microbiology, 80, 7186–7195.

    Article  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research, 42(13), 3498–3518.

    Article  CAS  Google Scholar 

  • Kim, J. W., Jang, H. S., Kim, J. G., Ishibashi, H., Hirano, M., Nasu, K., & Arizono, K. (2009). Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea. Journal of Health Science, 55(2), 249–258.

    Article  CAS  Google Scholar 

  • Koczura, R., Mokracka, J., Jabłońska, L., Gozdecka, E., Kubek, M., & Kaznowski, A. (2012). Antimicrobial resistance of integron-harboring Escherichia coli isolates from clinical samples, wastewater treatment plant and river water. Science of the Total Environment, 414, 680–685.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Levins, I., & Gosk, E. (2008). Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55, 285–290.

    Article  CAS  Google Scholar 

  • Lindsay, W. (1984). Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions. Journal of Plant Nutrition, 7, 489–500.

    Article  CAS  Google Scholar 

  • Liu, S., Ying, G. G., Zhao, J. L., Chen, F., Yang, B., Zhou, L. J., & Lai, H. J. (2011). Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1218(10), 1367–1378.

    Article  CAS  Google Scholar 

  • Loomis, W., & Durst, R. (1992). Chemistry and biology of boron. BioFactors, 3, 229–239.

    CAS  Google Scholar 

  • Malm, O. (1998). Gold mining as a source of mercury exposure in the Brazilian Amazon. Environmental Research, 77, 73–78.

    Article  CAS  Google Scholar 

  • Mast RF, Ruch RR, Meents WF (1973) Vanadium in Devonian, Silurian, and Ordovician crude oils of Illinois. Illinois State Geological Survey, Circular 483

  • Michael, I., Rizzo, L., McArdell, C., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47, 957–995.

    Article  CAS  Google Scholar 

  • Millar, J. J., Payne, J. T., Ochs, C. A., & Jackson, C. R. (2015). Particle-associated and cell-free extracellular enzyme activity in relation to nutrient status of large tributaries of the Lower Mississippi River. Biogeochemistry, 124, 255–271.

    Article  CAS  Google Scholar 

  • Mozaffari, M., & Sims, J. (1994). Phosphorus availability and sorption in an Atlantic Coastal Plain watershed dominated by animal-based agriculture. Soil Science, 157, 97–107.

    Article  CAS  Google Scholar 

  • Nakata, H., Kannan, K., Nasu, T., Cho, H. S., Sinclair, E., & Takemura, A. (2006). Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environmental Science & Technology, 40, 4916–4921.

    Article  CAS  Google Scholar 

  • Office of Air Quality, U.S. Environmental Protection Agency (2008) National Emission Inventory (NEI) data

  • Pan, Y. Y., Shi, Y. L., Wang, Y. W., Cai, Y. Q., & Jiang, G. B. (2010). Investigation of perfluorinated compounds (PFCs) in mollusks from coastal waters in the Bohai Sea of China. Journal of Environmental Monitoring, 12, 508–513.

    Article  CAS  Google Scholar 

  • Papadopoulou-Mourkidou, E. (2002). Quality of surface waters of Macedonia-Thrace, Northern Greece, quality control program, final report. Thessaloniki: Ministry of Agriculture.

    Google Scholar 

  • Pereira, W. E., Moody, J. A., Hostettler, F. D., Rostad, C. E., & Leiker, T. J. (1995). Concentrations and mass transport of pesticides and organic contaminants in the Mississippi River and some of its tributaries, 1987-89 and 1991-92. US Geological Survey, Open-File Report, 94-376, 169.

    Google Scholar 

  • Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40, 32–44.

    Article  CAS  Google Scholar 

  • Purdom, C., Hardiman, P., Bye, V., Eno, N., Tyler, C., & Sumpter, J. (1994). Estrogenic effects of effluents from sewage treatment works. Chemistry and Ecology, 8, 275–285.

    Article  CAS  Google Scholar 

  • Rabalais NN, Turner RE, & Wiseman Jr WJ (2002) Gulf of Mexico hypoxia, AKA “The dead zone”. Annual Review of ecology and Sysetematics, 235–263

  • Rabotyagov, S., Kling, C., Gassman, P., Rabalais, N., & Turner, R. (2014). The economics of dead zones: causes, impacts, policy challenges, and a model of the Gulf of Mexico hypoxic zone. Review of Environmental Economics and Policy, 8, 58–79.

    Article  Google Scholar 

  • Ribaudo, M., & Bouzaher, A. (1994). Atrazine: environmental characteristics and economics of management. Economic Research Service: US Department of Agriculture.

    Google Scholar 

  • Richardson, B. J., Lam, P. K., & Martin, M. (2005). Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin, 50, 913–920.

    Article  CAS  Google Scholar 

  • Royer, T.V., David, M.B., Gentry, L.E., Mitchell, C.A., Starks, K.M., Heatherly, T., et al. (2008). Assessment of chlorophyll-as a criterion for establishing nutrient standards in the streams and rivers of Illinois. Journal of Environmental Quality, 37(2), 437–447.

  • Rusiecki, J. A., De Roos, A., Lee, W. J., Dosemeci, M., Lubin, J. H., Hoppin, J. A., Blair, A., & Alavanja, M. C. (2004). Cancer incidence among pesticide applicators exposed to atrazine in the Agricultural Health Study. Journal of the National Cancer Institute, 96, 1375–1382.

    Article  CAS  Google Scholar 

  • Shiller, A. M. (1997). Dissolved trace elements in the Mississippi River: seasonal, interannual, and decadal variability. Geochimica et Cosmochimica Acta, 61, 4321–4330.

    Article  CAS  Google Scholar 

  • Shiller, A. M., & Boyle, E. A. (1985). Dissolved zinc in rivers. Nature, 317, 49–52.

    Article  CAS  Google Scholar 

  • Shiller, A. M., & Boyle, E. A. (1987). Variability of dissolved trace metals in the Mississippi River. Geochimica et Cosmochimica Acta., 51, 3273–3277.

    Article  CAS  Google Scholar 

  • Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano Federico, Ellefsen, K. J. (2014). Geochemical and mineralogical maps for soils of the conterminous United States: U.S. Geological Survey Open-File Report 2014-1082. doi:10.3133/ofr20141082.

  • Snyder, S. A. (2014). Emerging chemical contaminants: looking for better harmony. Journal American Water Work Association, 106, 38–52.

    Article  CAS  Google Scholar 

  • Snyder, S. A., Westerhoff, P., Yoon, Y., & Sedlak, D. L. (2003). Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environmental Engineering Science, 20, 449–469.

    Article  CAS  Google Scholar 

  • So, M. K., Miyake, Y., Yeung, W. Y., Ho, Y. M., Taniyasu, S., Rostkowski, P., & Yamashita, N. (2007). Perfluorinated compounds in the Pearl river and Yangtze river of China. Chemosphere, 68(11), 2085–2095.

    Article  CAS  Google Scholar 

  • Standley, L. J., Rudel, R. A., Swartz, C. H., Attfield, K. R., Christian, J., Erickson, M., & Brody, J. G. (2008). Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environmental Toxicology and Chemistry, 27(12), 2457–2468.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Joss, A., & Siegrist, H. (2004). Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environmental Science & Technology, 38, 392A–399A.

    Article  CAS  Google Scholar 

  • Tölgyesi, Á., Verebey, Z., Sharma, V. K., Kovacsics, L., & Fekete, J. (2010). Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography–tandem mass spectrometry. Chemosphere, 78(8), 972–979.

    Article  Google Scholar 

  • Turner, R. E., & Rabalais, N. N. (2003). Linking landscape and water quality in the Mississippi River basin for 200 years. Bioscience, 53, 563–572.

    Article  Google Scholar 

  • US EPA. (2003). Ambient aquatic life water quality criteria for atrazine. Washington DC: U.S. Environmental Protection Agency, Office of Water EPA-822-R-03-023.

    Google Scholar 

  • US EPA. (2016). PFOA & PFOS drinking water health advisories fact sheet. Washington DC: U.S. Environmental Protection Agency, Office of Water EPA-800-F-16-003.

    Google Scholar 

  • Valcárcel, Y., Alonso, S. G., Rodríguez-Gil, J. L., Maroto, R. R., Gil, A., & Catalá, M. (2011). Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river-and drinking-water of the Madrid region in Spain. Chemosphere, 82(7), 1062–1071.

    Article  Google Scholar 

  • Wetzel, R., & Likens, G. (2000). Limnolgical analysis (3rd edn). Philadelphia: WB Saunders Co., p. 357.

  • Wilhelm, C., & Wild, A. (1984). The variability of the photosynthetic unit in chlorella I. The effect of vanadium on photosynthesis, productivity, P-700 and cytochrome f in undiluted and homocontinuous cultures of chlorella. Journal of Plant Physiology, 115, 115–124.

    Article  CAS  Google Scholar 

  • Wilson, B. A., Smith, V. H., deNoyelles, F., & Larive, C. K. (2003). Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environmental Science & Technology, 37, 1713–1719.

    Article  CAS  Google Scholar 

  • Yang, L., Zhu, L., & Liu, Z. (2011). Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere, 83, 806–814.

    Article  CAS  Google Scholar 

  • Yoon, Y., Ryu, J., Oh, J., Choi, B., & Snyder, S. A. (2010). Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of the Total Environment, 408(3), 636–643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly funded by an award from the US National Science Foundation (Division of Environmental Biology) (Award #1049911). The team acknowledges Agilent Technologies for their equipment and technical support for the analyses of trace organic contaminants at the University of Arizona. We would like to thank Jason Payne, Justin Millar, Bram Stone, and Alexa Lampkin for all their help with sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Cizdziel.

Electronic supplementary material

Esm 1

(DOCX 17 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussan, D.D., Ochs, C.A., Jackson, C.R. et al. Concentrations of select dissolved trace elements and anthropogenic organic compounds in the Mississippi River and major tributaries during the summer of 2012 and 2013. Environ Monit Assess 189, 73 (2017). https://doi.org/10.1007/s10661-017-5785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5785-x

Keywords

Navigation