Advertisement

Assessment of environmental loads of Cu and Zn from intensive inland shrimp aquaculture

  • J.A. León-Cañedo
  • S.G. Alarcón-Silvas
  • J.F. Fierro-Sañudo
  • M.M. Mariscal-Lagarda
  • T. Díaz-Valdés
  • F. Páez-Osuna
Article

Abstract

An experiment was developed to simulate inland shrimp farming using diluted seawater (1.9 g L−1) containing 75 shrimps (Litopenaeus vannamei) per square meter during a growth cycle of 120 days. In this study, the environmental loads of copper and zinc were estimated and compared to anthropogenic sources and shrimp aquacultures in other locations. Both metals resulted primarily from feeding, which accounted for 91.8% of Cu and 97.0% of Zn. Concentrations of Cu (110.8 ± 11.8 μg g−1) and Zn (69.0 ± 0.7 μg g−1) measured in the harvested shrimp had higher Cu and lower Zn concentrations compared to those reported for farmed shrimp from Brazil and Mexico. Clearly, organic sludge was the main route of removal for both metals (Cu 46.2%; Zn 92.6%). The annual environmental loads estimated for inland shrimp aquaculture were 598 ± 74 g Cu ha−1 and 5080 ± 328 g Zn ha−1.

Keywords

Environmental load Copper Zinc Litopenaeus vannamei Shrimp farming Gulf of California 

Notes

Acknowledgements

This work is supported by the Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, and the project DGAPA-PAPIIT IN201916 Evaluación de efectos letales y subletales de amonio, nitritos y nitratos en camarón Litopenaeus vannamei en aguas de baja salinidad. The authors thank Fernando Marino Pinzón by the support from Proveedora de Larvas S.A. de C.V. (FITMAR) to facilitate the larvae used in the experiment. To H. Bojórquez Leyva, J. Ramírez-Rochin, and M. Fregoso-López for the help in the chemical analysis. This work was developed in the Experimental Module YK with FPO support.

References

  1. APHA (American Public Health Association). (1989). Standard methods for the examination of water and wastewater. Baltimore: Port City Press.Google Scholar
  2. Cardoso-Mohedano, J. G., Paez-Osuna, F., Amezcua-Martinez, F., Ruiz-Fernandez, A. C., Resendiz-Ramirez, G., & Sanchez-Cabeza, J. A. (2016). Combined environmental stress from shrimp farm and dredging releases in a subtropical coastal lagoon (SE gulf of California). Marine Pollution Bulletin, 104, 83–91.CrossRefGoogle Scholar
  3. CONAPESCA (2013). Anuario estadístico de acuacultura y pesca de la Comisión Nacional de Acuacultura y Pesca. SAGARPA 290 p.Google Scholar
  4. Costa, B. G. B., Soares, T. M., Torres, R. F., & Lacerda, L. D. (2013). Mercury distribution in a mangrove tidal creek affected by intensive shrimp farming. Bulletin of Environmental Contamination and Toxicology, 90, 537–541.CrossRefGoogle Scholar
  5. Darmono, D., & Denton, G. R. W. (1990). Heavy metal concentrations in the banana prawn Penaeus merguiensis and leader prawn P. monodon in the Townsville region of Australia. Bulletin of Environmental Contamination and Toxicology, 44, 479–486.CrossRefGoogle Scholar
  6. Esparza-Leal, H. M., Ponce-Palafox, J. T., Valenzuela-Quiñonez, W., Arredondo-Figueroa, J. L., & Garcia-Ulloa, M. (2010). Effects of density on growth and survival of juvenile pacific white shrimp, Penaeus vannamei, reared in low-salinity well water. Journal of the World Aquaculture Society, 41(4), 648–654.CrossRefGoogle Scholar
  7. FAO (2016). The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome, 200 pp.Google Scholar
  8. Grasshoff, K., Ehrhardt, M., & Krembling, K. (1990). Methods of seawater analysis. Verlag Chemie 419 p.Google Scholar
  9. Gross, A., Abutbul, S., & Zilberg, D. (2004). Acute and chronic effects of nitrite on white shrimp (Litopenaeus vannamei) culture in low-salinity brackish water. Journal of the World Aquaculture Society, 35(3), 315–321.CrossRefGoogle Scholar
  10. Hatje, V., de Souza, M. M., Ribeiro, L. F., Eca, G. F., & Barros, F. (2016). Detection of environmental impacts of shrimp farming through multiple lines of evidence. Environmental Pollution, 219, 672–684.CrossRefGoogle Scholar
  11. Kargin, F., Donmez, A., & Cogun, H. Y. (2001). Distribution of heavy metals in different tissues of the shrimp Penaeus semiculatus and Metapenaeus monocerus from the Iskenderun gulf, Turkey: seasonal variations. Bulletin of Environmental Contamination and Toxicology, 66, 102–109.CrossRefGoogle Scholar
  12. Lacerda, L. D., Mussi-Molisani, M., Sena, D., & Parente-Mai, L. (2008). Estimating the importance of natural and anthropogenic sources on N and P emission to estuaries along the Ceará State Coast NE Brazil. Environmental Monitoring and Assessment, 141, 149–164.CrossRefGoogle Scholar
  13. Lacerda, L. D., Santos, J. A., & Madrid, R. M. (2006a). Copper emission factors from intensive shrimp aquaculture. Marine Pollution Bulletin, 52, 1823–1826.CrossRefGoogle Scholar
  14. Lacerda, L. D., Vaisamn, A. G., Parente, L. P., Cunha, E., & Silva, C. A. R. (2006b). Relative importance of nitrogen and phosphorus emissions from shrimp farming and other anthropogenic sources for six estuaries along the NE Brazilian coast. Aquaculture, 253, 433–446.CrossRefGoogle Scholar
  15. Li, E., Chen, L., Zeng, C., Chen, X., Yu, N., Lai, Q., & Qin, J. G. (2007). Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture, 265, 385–390.CrossRefGoogle Scholar
  16. Lyle-Fritch, M. L., Romero-Beltrán, E., & Páez-Osuna, F. (2006). A survey on use of chemical and biological products in shrimp farming from NW Mexico. Aquacultural Engineering, 35, 135–146.CrossRefGoogle Scholar
  17. Mariscal-Lagarda, M. M., Páez-Osuna, F., Esquer-Mendez, J. L., Guerrero-Monroy, I., Romo Del Vivar, A., & Felix-Gastelum, R. (2012). Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquaculture, 336-367, 76–84.CrossRefGoogle Scholar
  18. McGraw, W. J., & Scarpa, J. (2004). Mortality of freshwater-acclimated Litopenaeus vannamei associated with acclimation rate, habituation period, and ionic challenge. Aquaculture, 236(1–4), 128–296.Google Scholar
  19. Migues, V. H., Almeida-Bezerra, M., Francisco, A. K., Guerrazzi, M. C., & Affonso, P. R. (2013). Accumulation of trace metals in two commercially important shrimp species from Camamu Bay, Northeastern Brazil. Bulletin of Environmental Contamination and Toxicology, 91, 292–297.CrossRefGoogle Scholar
  20. Molnar, N., Welsh, D. T., Marchand, C., Deborde, J., & Meziane, T. (2013). Impacts of shrimp farm effluent on water quality, benthic metabolism and N-dynamics in a mangrove forest (New Caledonia). Estuarine, Coastal & Shelf Science, 117, 12–21.CrossRefGoogle Scholar
  21. Nauen, C. (1983). Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular, 764, 102.Google Scholar
  22. Páez-Osuna, F. (2001). The environmental impact of shrimp aquaculture: causes, effects and mitigating alternatives. Environmental Management, 28(1), 131–140.CrossRefGoogle Scholar
  23. Páez-Osuna, F., & Trón-Mayen, L. (1996). Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Penaeus vannamei from the northwest coast of Mexico. Environment International, 22(4), 443–450.CrossRefGoogle Scholar
  24. Páez-Osuna, F., & Ruiz-Fernández, A. C. (2005). Environmental load of nitrogen and phosphorus from extensive, semi-intensive and intensive shrimp farms in the Gulf of California ecoregion. Bulletin of Environmental Contamination and Toxicology, 74(4), 681–688.CrossRefGoogle Scholar
  25. Páez-Osuna, F., Gracia, A., Flores-Verdugo, F., Lyle-Fritch, L. P., Alonso-Rodríguez, R., Roque, A., & Ruiz-Fernández, A. C. (2003). Shrimp aquaculture development and the environment in the Gulf of California ecoregion. Marine Pollution Bulletin, 46, 806–815.CrossRefGoogle Scholar
  26. Peris, M., Micó, C., Recatalá, L., Sánchez, R., & Sánchez, J. (2007). Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Science of the Total Environment, 378, 42–48.CrossRefGoogle Scholar
  27. Piñón-Gimate, A., Soto-Jiménez, M., Ochoa-Izaguirre, M. J., García-Pagésm, J., & Páez-Osuna, F. (2009). Macroalgae blooms and δ15N in subtropical coastal lagoons from Southeastern Gulf of California: discrimination among agricultural, shrimp and sewage effluents. Marine Pollution Bulletin, 58, 1144–1151.CrossRefGoogle Scholar
  28. Ribeiro, L. F., Eça, G. F., Barros, F., & Hatje, V. (2016). Impacts of shrimp farming cultivation cycles on macrobenthic assemblages and chemistry of sediments. Environmental Pollution, 211, 307–315.CrossRefGoogle Scholar
  29. Smith, D. M., Burford, M. A., Tabrett, S. J., Irvin, S. J., & Ward, L. (2002). The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture, 207, 125–136.CrossRefGoogle Scholar
  30. Sowers, A. D., Young, S. P., Isely, J. J., Browdy, C. L., & Tomasso, J. (2004). Nitrite toxicity to Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts. Journal of the World Aquaculture Society, 35, 445–451.CrossRefGoogle Scholar
  31. Swapna, K. M., Rajesh, R., & Lakshmanan, P. T. (2012). Incidence of antibiotic residues in farmed shrimps from the southern states of India. Indian Journal of Marine Sciences, 41, 344–347.Google Scholar
  32. Thuy, H. T. T., Nga, L. P., & Loan, T. T. C. (2011). Antibiotic contaminants in coastal wetlands from Vietnamese shrimp farming. Environmental Science and Pollution Research, 18, 835–841.CrossRefGoogle Scholar
  33. UNEP (1995). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Reference Methods for Marine Pollution Studies No. 63, UNEP.Google Scholar
  34. Vieira da Silva, F. B., do Araújo Nascimento, C. W., da Vieira Silva, L. H., & da Silva, R. F. (2016). Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis. Environmental & Monitoting Assessment, 188, 457.CrossRefGoogle Scholar
  35. Wu, X. Y., & Yang, Y. F. (2011). Heavy metal (Pb, Co, Cd, Cr, Cu, Fe, Mn and Zn) concentrations in harvest-size white shrimp Litopenaeus vannamei tissues from aquaculture and wild source. Journal of Food Composition and Analysis, 24, 62–65.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • J.A. León-Cañedo
    • 1
  • S.G. Alarcón-Silvas
    • 2
  • J.F. Fierro-Sañudo
    • 1
  • M.M. Mariscal-Lagarda
    • 3
  • T. Díaz-Valdés
    • 4
  • F. Páez-Osuna
    • 5
  1. 1.Posgrado en Ciencias Agropecuarias, Colegio de Ciencias AgropecuariasUniversidad Autónoma de SinaloaCuliacánMéxico
  2. 2.Posgrado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMéxico
  3. 3.Unidad Académica Benito JuárezUniversidad Estatal de SonoraVilla JuárezMéxico
  4. 4.Facultad de AgronomíaUniversidad Autónoma de SinaloaCuliacánMéxico
  5. 5.Unidad Académica Mazatlán, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMéxico

Personalised recommendations