Monitoring and assessment of surface water quality in Taquari-Antas Watershed, South Brazil—region with intensive pig farming

  • Vania Elisabete Schneider
  • Roger Vasques Marques
  • Taison Anderson Bortolin
  • Gisele Cemin
  • Geise Macedo dos Santos


Pig farming is one of the human activities carried out to meet the increasing food demand by the increasing population. South Brazil is the region with most intensive pig farming in the country, exerting pressure on the water and soil environments by the relevant pollutant emissions. Therefore, the main objective of this work was to assess pig farming pollution by monitoring superficial water qualities of the Taquari-Antas Watershed in South Brazil. The study area is about 8062 km2 (south latitude 292,614, 282,624 and west longitude 520,802, 504,554). In 2014, there were 861 pig farmers and 739,858 animals were slaughtered. Samples were collected bimonthly from 13 spots during 2 years of monitoring. The main analysis included the determination of the water quality index (WQI)—a nine physicochemical and microbiological parameter index—and the trophic state index (TSI), which gives a trophic degree based on phosphorous and chlorophyll-α concentration to assess the impacts of the pig farming on superficial water of the region. The results suggest that the regions with high concentration of finishing stage farms present a higher risk to water quality. A distance of 4 km between different spots was enough to detect a significant decrease in the WQI. The WQI was found ranging from “regular” to “good” (62.77 and 78.95). The TSI were found to be mesotrophic at every spot during the entire period of the study.


Pig farming Environmental impact Environmental monitoring Water quality index Trophic state index 



The authors thank the Rio Grande do Sul State Research Foundation (FAPERGS—from Portuguese) and the Coordination for Improvement of Higher Education Personnel (CAPES—from Portuguese) for their financial support to this study.

Supplementary material

10661_2016_5635_MOESM1_ESM.docx (59 kb)
ESM 1 (DOCX 59 kb)


  1. American Public Health Association – APHA (2012). Standard methods for the examination of water & wastewater (22 ed.). São Paulo: APHA. Pharmabooks.Google Scholar
  2. Arbat, G., Roselló, A., Domingo Olivé, F., Puig-Bargués, J., Gozález Llinás, E., Duran-Ros, M., Pujol, J., & Ramírez de Cartagena, F. (2012). Soil water and nitrate distribution under drip irrigated corn receiving pig slurry. Agricultural Water Management, 120, 11–22.CrossRefGoogle Scholar
  3. Awad, Y. M., Kim, S. C., Abd El-Azeem, S. A. M., Kim, K. H., Kim, K. R., Kim, K., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment and soil near a swine manure composting facility. Environmental Earth Science, 71, 1433–1440.CrossRefGoogle Scholar
  4. Bernet, N., & Béline, F. (2009). Challenges and innovations on biological treatment of livestock effluents. Bioresource Technology, 100, 5431–5436.CrossRefGoogle Scholar
  5. Bonanno, G., & Giudice, R. L. (2010). Application of two quality indices as monitoring and management tools of rivers. Case study: the Imera Meridionale River, Italy. Environmental Management, 45, 856–867.CrossRefGoogle Scholar
  6. Brazil. Ministry of Environment. National Environment Council. (2005). Resolution 357. Provisions for the classification of environmental directives for the framing of superficial water bodies as well as for the establishment of conditions and standards related to releases into effluents. Brasília – DF.Google Scholar
  7. Brazil. Ministry of Planning, Budget and Management. Brazilian Institute of Geography and Statistics. (2016). Indicadores de produção pecuária – Março/2016 [Livestock Production Index – March/2016].Google Scholar
  8. Candelise, C., Speirs, J. F., & Gross, R. J. K. (2012). Materials availability for thin film (TF) PV technologies development: a real concern? Renewable and Sustainable Energy Reviews, 15, 4972–4981.CrossRefGoogle Scholar
  9. Carra, S. H. Z. (2015). Pegada hídrica da atividade suinícola na região do Corede Serra [Waterfootprint of pig farmers in Corede Serra region]. Dissertation (Master). Universidade de São Paulo (USP). Retrieved from: Acessed Aug 2016.
  10. Cherubini, E., Zanghelini, G. M., Alvarenga, R. A. F., Franco, D., & Soares, S. R. (2015). Life cycle assesment of swine production in Brazil: a comparison of four manure management systems. Journal of Cleaner Production, 87, 68–77.CrossRefGoogle Scholar
  11. Fridrich, B., Krcmar, D., Dalmacija, B., Molnar, J., Pesic, V., Kragulj, M., & Varga, N. (2014). Impact of wastewater from pig farm lagoons on the quality of local groundwater. Agricultural Water Management, 135, 40–53.CrossRefGoogle Scholar
  12. Gallay, A., de Valk, H., Cournot, M., Ladeuil, B., Hemery, C., Castor, C., Bon, F., Mégraud, F., le Cann, P., & Desenclos, J. C. (2006). A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clinical Microbiology and Infection, 12, 561–570.CrossRefGoogle Scholar
  13. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.CrossRefGoogle Scholar
  14. Haberl, H., Erb, K., Krausmann, F., Running, S., Searchinger, T. D., & Kolby Smith, W. (2013). Bioenergy: how much can we expect for 2050? Environmental Research Letters, 8, 31004–31008.CrossRefGoogle Scholar
  15. Hayes-Labruto, L., Schillebeeckx, S. J. D., Workman, M., & Shah, N. (2013). Contrasting perspectives on China’s rare earths policies: reframing the debate through a stakeholder lens. Energy Policy, 63, 55–68.CrossRefGoogle Scholar
  16. Holman, I. P., Howden, N. J. K., Bellamy, P., Willby, N., Whelan, M. J., & Rivas-Casado, M. (2010). An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Science of the Total Environment, 408, 1847–1857.CrossRefGoogle Scholar
  17. Jha, D. K., Devi, M. P., Vidyalakshmi, R., Brindha, B., Vinithkumar, N. V., & Kirubagaran, R. (2015). Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India. Marine Pollution Bulletin, 100(1), 555–561.CrossRefGoogle Scholar
  18. Kalavathy, S., Sharma, T. R., & Sureshkumar, P. (2011). Water quality index of river Cauvery in Tiruchirappalli district, Tamilnadu. Archives of Environmental Science, 5, 55–61.Google Scholar
  19. Lamparelli, M. C. (2015). Graus de trofia em corpos d’agua do estado de São Paulo: avaliação dos métodos de monitoramento [Trophic Status in São Paulo State Water Bodies: Evaluation of Monitoring Methodologies]. Thesis (Doctoral). Universidade de São Paulo (USP). Retrieved from:–20032006–075813/pt-br.php. Accessed May 2015.
  20. Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental Pollution, 163, 287–303.CrossRefGoogle Scholar
  21. Martinez, J., Dabert, P., Barrington, S., & Burton, C. (2009). Livestock waste treatment systems for environmental quality, food safety, and sustainability. Bioresource Technology, 100, 5527–5536.CrossRefGoogle Scholar
  22. Martinez-Almeda, J., & Barrera, J. M. (2005). SELCO-Ecopurin pig slurry treatment system. Bioresource Technology, 96, 223–228.CrossRefGoogle Scholar
  23. Momblanch, A., Paredes-Arquiola, J., Munné, A., Manzano, A., Arnau, J., & Andreu, J. (2015). Managing water quality under drought conditions in the Llobregat River basin. Science of the Total Environment, 503–504, 300–318.CrossRefGoogle Scholar
  24. Nolan, T., Troy, S. H., Gilkinson, S., Frost, P., Xie, S., Zhan, X., Harrington, C., Healy, M. G., & Lawlor, P. G. (2012). Economic analysis of pig manure treatment options in Ireland. Bioresource Technology, 105, 15–23.CrossRefGoogle Scholar
  25. Noyola, A., Morgan-Sagastume, J. M., & Lopez-Hernandez, J. F. (2006). Treatment of biogas produced in anaerobic reactors from domestic wastewater: odor control and energy/resource recovery. Reviews in Environmental Science and Biotechnology, 5(1), 93–114.CrossRefGoogle Scholar
  26. Ogbuewu, I. P., Odoemenam, V. U., Omede, A. A., Durunna, C. S., Emenalom, O. O., Uchegbu, M. C., Okoli, I. C., & Iloeje, M. U. (2012). Livestock waste and its impact on the environment. Scientific Journal of Review, 1(2), 17–32.Google Scholar
  27. Palhares, J. C. P. (2011). Water footprint of pigs slaughtered in the states of south-Central Brazil. Acta Scientarium Animal Science, 33, 309–314.Google Scholar
  28. Payet, N., Nicolini, E., Rogers, K., Macary, H. S., & Vauclin, M. (2010). Evidence of soil pollution by nitrates derived from pig effluent using 18O and 15N isotope analyses. Agronomy for Sustainable Development, 30, 743–751.CrossRefGoogle Scholar
  29. Pizzuti, L., Martins, C. A., & Lacava, P. T. (2016). Laminar burning velocity and flammability limits in biogas: a literature review. Renewable and Sustainable Energy Reviews, 62, 856–885.CrossRefGoogle Scholar
  30. Reckmann, K., Traulsen, I., & Krieter, J. (2013). Life cycle assessment of pork production: a data inventory for the case of Germany. Live Stock Science, 157, 586–596.CrossRefGoogle Scholar
  31. Riano, B., & Garcia-Gonzalez, M. C. (2014). On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction. Journal of Environmental Management, 132, 87–93.CrossRefGoogle Scholar
  32. Santos, I. (2001). Hidrometria aplicada, 1edn. Curitiba, Paraná. 372p. ISBN 8588519011. Lactec.Google Scholar
  33. Sao Paulo (2009). Retrieved at: Environmental company of Sao Paulo state. São Paulo: Quality of Superficial Waters of Sao Paulo State – Appendix C.Google Scholar
  34. Sasada, Y., Win, K., Nonaka, R., Win, A., Toyota, K., Motobayashi, T., Hosomi, M., Dingjiang, C., & Lu, J. (2011). Methane and N2O emissions, nitrate concentrations of drainage water, and zinc and copper uptake by rice fertilized with anaerobically digested cattle or pig slurry. Biology and Fertility of Soils, 47(8), 949–956.CrossRefGoogle Scholar
  35. Schneider, R., Nadvorny, A., & Schmidt, V. (2009). Antibiotic resistance patterns of Escherichia coli strains isolated from surface water and groundwater samples in a pig production area. Biotemas, 22(3), 11–17.Google Scholar
  36. Sharma, P., Meher, P. K., Kumar, A., Gautam, Y. P., & Mishra, K. P. (2014). Changes in water quality index of Ganges river at different locations in Allahabad. Sustainability of Water Quality and Ecology, 3–4, 67–76.CrossRefGoogle Scholar
  37. Speirs, J., McGlade, C., & Slade, R. (2015). Uncertainty in the availability of natural resources: fossil fuels, critical metals and biomass. Energy Policy, 87, 654–664.CrossRefGoogle Scholar
  38. Su, J., & Chen, Y. (2015). Monitoring of sulfur dioxide emission resulting from biogas utilization on commercial pig farms in Taiwan. Environmental Monitoring Assessment, 187, 4109. doi: 10.1007/s10661-014-4109-7.CrossRefGoogle Scholar
  39. Tavares, J. M. R., Belli Filho, P., Coldebella, A., & Oliveira, P. A. V. (2014). The water disappearance and manure production at commercial growing-finishing pig farms. Livestock Science, 169, 146–154.CrossRefGoogle Scholar
  40. United States Department of Agriculture – USDA. (2015). Livestock and poultry: world markets and trade. Foreign Agricultural Service.Google Scholar
  41. Vanotti, M. B., Millner, P. D., Hunt, P. G., & Ellison, A. Q. (2005). Removal of pathogen and indicator microorganisms from liquid swine manure in multi-step biological and chemical treatment. Bioresource Techonology, 96, 209–214.CrossRefGoogle Scholar
  42. Viancelli, A., Kunz, A., Steinmetz, R. L. R., Kich, J. D., Souza, C. K., Canal, C. W., Coldebella, A., Esteves, P. A., & Barardi, C. R. M. (2013). Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens. Chemosphere, 90(4), 1539–1544.CrossRefGoogle Scholar
  43. Von Sperling, M. (2007). Basic principles of wastewater treatment . London: International Water Association Publishing.200p. eISBN: 9781780402093Google Scholar
  44. Walczak, J. J., & Xu, S. (2011). Manure as a source of antibiotic-resistant Escherichia coli and enterococci: a case study of a Wisconsin, USA family dairy farm. Water, Soil and Air Pollution, 219, 579–589.CrossRefGoogle Scholar
  45. Xu, J., Vujic, T., & Deshusses, M. A. (2014). Nitrification of anaerobic digester effluent for nitrogen management at swine farms. Chemosphere, 117, 708–714.CrossRefGoogle Scholar
  46. Zang, B., Li, S., Michel Jr., F., Li, G., Luo, Y., Zhang, D., & Li, Y. (2016). Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting. Waste Management, 56, 498–505.CrossRefGoogle Scholar
  47. Zhang, X., Li, Y., Liu, B., Wang, J., Feng, C., Gao, M., & Wang, L. (2014). Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in Northern China. Public Library of Science One., 9(11), 1–11. doi: 10.1371/journal.pone.0111026.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vania Elisabete Schneider
    • 1
  • Roger Vasques Marques
    • 1
  • Taison Anderson Bortolin
    • 1
  • Gisele Cemin
    • 1
  • Geise Macedo dos Santos
    • 1
  1. 1.Environmental Sanitation InstituteUniversity of Caxias do Sul. Cidade UniversitáriaCaxias do SulBrazil

Personalised recommendations