Skip to main content

Advertisement

Log in

Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldabaa, A. A. A., Weindorf, D. C., Chakraborty, S., Sharma, A., & Li, B. (2015). Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma. doi:10.1016/j.geoderma.2014.09.011.

    Google Scholar 

  • Andrade, E. M., Meireles, A. C. M., Alexandre, D. M. B., Palácio, H. A. Q., & Lima, C. A. (2011). Investigação de mudanças do status salino do solo pelo emprego de análise multivariada. Revista Brasileira De Engenharia Agricola e Ambiental. doi:10.1590/S1415-43662011000400013.

    Google Scholar 

  • Bannari, A., Guedon, A. M., El-Harti, A., Cherkaoui, F. Z., & El-Ghmari, A. (2008). Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Communications in Soil Science and Plant Annalysis. doi:10.1080/00103620802432717.

    Google Scholar 

  • Ben-Dor, E. (2002). Quantitative remote sensing of soil properties. Advances in Agronomy. doi:10.1016/S0065-2113(02)75005-0.

    Google Scholar 

  • Ben-Dor, E., Taylor, R. G., Hill, J., Dematte, J. A. M., Whiting, M. L., Chabrillat, S., & Sommer, S. (2008). Imaging spectrometry for soil applications. Advances in Agronomy. doi:10.1016/S0065-2113(07)00008-9.

    Google Scholar 

  • Bilgili, A. V., Cullu, M. A., Van Es, H. M., Aydemir, A., & Aydemir, S. (2011). The use of hyperspectral visible and near infrared reflectance spectroscopy for the characterization of salt-affected soils in the Harran plain, Turkey. Arid Land Research Management. doi:10.1080/15324982.2010.528153.

    Google Scholar 

  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma. doi:10.1016/j.geoderma.2005.04.025.

    Google Scholar 

  • Cierniewski, J., & Kuśnierek, K. (2010). Influence of several size properties on soil surface reflectance. Quaestiones Geographicae. doi:10.2478/v10117-010-0002-9.

    Google Scholar 

  • Clay, D. E., Chang, J., Malo, D. D., Carlson, C. G., Reese, C., Clay, S. A., Ellsbury, M., & Berg, B. (2001). Factors influencing spatial variability of soil apparent electrical conductivity. Communications in Soil Science and Plant Analysis, 32(19–20), 2993–3008.

    Article  CAS  Google Scholar 

  • Csillag, F., Pasztor, L., & Biehl, L. L. (1993). Spectral band selection for the characterization of salinity status of soils. Remote Sensing of Environment. doi:10.1016/0034-4257(93)90068-9.

    Google Scholar 

  • de Albuquerque, U. P., Araujo, E. D., El-Deir, A. C. A., de Lima, A. L. A., Souto, A., Bezerra, B. M., Ferraz, E. M. N., Freire, E. M. X., Sampaio, E., Las-Casas, F. M. G., de Moura, G. J. B., Pereira, G. A., de Melo, J. G., Ramos, M. A., Rodal, M. J. N., Schiel, N., de Lyra-Neves, R. M., Alves, R. R. N., de Azevedo, S. M., Telino, W. R., & Severi, W. (2012). Caatinga revisited: ecology and conservation of an important seasonal dry Forest. Scientific World Journal. doi:10.1100/2012/205182.

    Google Scholar 

  • De la Paix, M. J., Lanhai, L., Xi, C., Varenyam, A., Nyongesah, M. J., & Habiyaremye, G. (2013). Physicochemical properties of saline soils and Aeolian dust. Land Degradation & Development. doi:10.1002/ldr.1148.

    Google Scholar 

  • Demattê, J. A. M., Silva, M. L. S., Rocha, G. C., Carvalho, L. A., Formaggio, A. R. A. R., & Firme, L. P. (2005). Variações espectrais em solos submetidos à aplicação de torta de filtro. Revista Brasileira De Ciencia Do Solo. doi:10.1590/S0100-06832005000300001.

    Google Scholar 

  • Demattê, J. A. M., Nanni, M. R., Formaggio, A. R., & Epiphanio, J. C. N. (2007). Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils. International Journal of Remote Sensing. doi:10.1080/01431160701250408.

    Google Scholar 

  • Dregne, H. E., & Chou, N. (1992). Global desertification dimensions and costs. In H. E. Dregne (Ed.), Degradation and restoration of arid lands. Lubbock: Texas Tech University.

    Google Scholar 

  • Elnaggar, A. A., & Noller, J. S. (2010). Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sensing. doi:10.3390/rs2010151.

    Google Scholar 

  • Evans, F. H., & Caccetta, P. L. (2000). Broad-scale spatial prediction of areas at risk from dryland salinity. Cartograhy. doi:10.1080/00690805.2000.9714106.

    Google Scholar 

  • Fan, X., Pedroli, B., Liu, G., Liu, Q., Liu, H., & Shu, L. (2012). Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development. doi:10.1002/ldr.1071.

    Google Scholar 

  • Farifteh, J., Farshad, A., & George, R. J. (2006). Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma. doi:10.1016/j.geoderma.2005.02.003.

    Google Scholar 

  • Farifteh, J., Van der Meer, F. D., Atzberger, C., & Carranza, E. J. M. (2007). Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment. doi:10.1016/j.rse.2007.02.005.

    Google Scholar 

  • Fernandez-Buces, N., Siebe, C., Cram, S., & Palacio, J. L. (2006). Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former Lake Texcoco, Mexico. Journal of Arid Environments. doi:10.1016/j.jaridenv.2005.08.005.

    Google Scholar 

  • Ferreira, J., Pardini, R., Metzger, J. P., Fonseca, C. R., Pompeu, P. S., Sparovek, G., & Louzada, J. (2012). Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. Journal of Applied Ecology. doi:10.1111/j.1365-2664.2012.02145.x.

    Google Scholar 

  • Ganjegunte, G. K., Sheng, Z., & Clark, J. A. (2014). Soil salinity and sodicity appraisal by eletromagnetic induction in soils irrigated to grow cotton. Land Degradation & Development. doi:10.1002/ldr.1162.

    Google Scholar 

  • Gausman, H. W., Allen, W. A., Cardenas, R., & Bowen, R. L. (1970). Color photos, cotton leaves and soil salinity. Photogrammertic Engineering and Remote Sensing, 36, 454–459.

    Google Scholar 

  • Goncalves, T. D., & Rodrigues, J. D. (2006). Evaluating the salt content of salt-contaminated samples on the basis of their hygroscopic behaviour. Part I: fundamentals, scope and accuracy of the method. Journal of Cultural Heritage. doi:10.1016/j.culher.2006.02.009.

    Google Scholar 

  • Grove, C. I., Hook, S. J., & Taylor, E. P. (1992). Laboratory reflectance spectra of 160 minerals. California: National Aeronautics and Space Administration 355 pp.

    Google Scholar 

  • Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth form and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49, 77–83.

    Google Scholar 

  • Hatchell, D. C. (1999). Analytical spectral devices (ASD) technical guide, 4th Edition. Available online at: www.asdi.com

  • Howari, F. M., Goodell, P. C., & Miyamot, S. (2002). Spectral properties of salt crusts formed on saline soils. Journal of Environmental Quality. doi:10.2134/jeq2002.1453.

    Google Scholar 

  • Leal, I. R., Da Silva, J. M. C., Tabarelli, M., & Lacher, T. E. (2005). Changing the course of biodiversity conservation in the caatinga of northeastern Brazil. Conservation Biology, 19(3), 701–706.

    Article  Google Scholar 

  • Leone, A. P., & Sommer, S. (2000). Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern Apennines (Italy). Remote Sensing of Environment. doi:10.1016/S0034-4257(99)00110-8.

    Google Scholar 

  • MacDowell, C. M. (1997). Manual de métodos de análises de solo. Rio de Janeiro: Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA.

    Google Scholar 

  • Metternicht, G., & Zinck, J. A. (1997). Spatial discrimination of salt- and sodium-affected soil surfaces. International Journal of Remote Sensing. doi:10.1080/014311697217486.

    Google Scholar 

  • Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment. doi:10.1016/S0034-4257(02)00188-8.

    Google Scholar 

  • Morshed, M. M., Islam, M. T., & Jamil, R. (2016). Soil salinity detection from satellite image analysis: an integratted aproach of salinty indices and field data. Environmental Monitoring and Assessment. doi:10.1007/s10661-015-5045-x.

    Google Scholar 

  • Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., & Limperis, T. (1977). Geometrical considerations and nomenclature for reflectance. Washington, DC: Department of Commerce/National Bureau of Standards.

    Book  Google Scholar 

  • Olveira, L. B., Ribeiro, M. R., Ferraz, F. B., Ferreira, M. G. V. X., & Mermut, A. R. (2004). Mineralogia, micromorfolgia e gênese de solos planossólicos do sertão do araripe, estado de Pernambuco. Revista Brasileira de Ciência do Solo. doi:10.1590/S0100-06832004000400009.

    Google Scholar 

  • Palacios-Orueta, A., Pinzon, J. E., Ustin, S. L., & Roberts, D. A. (1999). Remote sensing of soils in the Santa Monica Mountains: II. Hierarchical foreground and background analysis. Remote Sensing of Environment. doi:10.1016/S0034-4257(98)00106-0.

    Google Scholar 

  • Pereira, F. A. M., Medina, B. F., Gheyi, H. R., & Etchevers, J. D. (1982). Solos afetados por sais no Nordeste. II. Correlação entre sódio solúvel e intercambiável. Revista Brasileira De Ciencia Do Solo, 6, 167–170.

    Google Scholar 

  • Pereira, I. M., Andrade, L. A., Sampaio, E., & Barbosa, M. R. V. (2003). Use-history effects on structure and flora of Caatinga. Biotropica. doi:10.1111/j.1744-7429.2003.tb00275.x.

    Google Scholar 

  • Queiroz, J. S., & Norton, B. E. (1992). An assessment of indigenous soil classification used in the Caatinga region of Ceara State. Northeast Brazil. Agricultural Systems. doi:10.1016/0308-521X(92)90101-S.

    Google Scholar 

  • Rao, B. R. M., Sankar, T. R., Dwivedi, R. S., Thammappa, S. S., Venkataratnam, L., Sharma, R. C., & Das, S. N. (1995). Spectral behavior of salt-affected soils. International Journal of Remote Sensing. doi:10.1080/01431169508954546.

    Google Scholar 

  • Ribeiro, M. R., Freire, F. J., & Montenegro, A. A. (2003). Solos halomórficos no Brasil: Ocorrência, gênese, classificação, uso e manejo sustentável. In N. Curi et al. (Eds.), Tópicos em Ciência do Solo (pp. 165–208). Viçosa: Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Sampaio, E. V. S. B. (1995). Overview of the Brazilian Caatinga. In S. H. Bullock et al. (Eds.), Seasonally dry tropical forests (pp. 36–63). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schaepman, M. E., Ustin, S. L., Plaza, A. J., Painter, T. H., Verrelst, J., & Liang, S. L. (2009). Earth system science related imaging spectroscopy-an assessment. Remote Sensing of Environment. doi:10.1016/j.rse.2009.03.001.

    Google Scholar 

  • Setia, R., Lewis, M., Marschner, P., Raja Segaran, R., Summers, D., & Chittleborough, D. (2013). Severity of salinity accurately detected and classified on a paddok scale with high resolution multispectral satellite imagery. Land Degradation & Development. doi:10.1002/ldr.1134.

    Google Scholar 

  • Sharma, B. R., & Bhargava, G. P. (1988). Landsat imagery for mapping saline soils and wetlands in Northwest India. International Journal of Remote Sensing. doi:10.1016/j.proeng.2012.01.1193.

    Google Scholar 

  • Shi, Z., & Huang, M. X. (2007). Evaluating reclamation levels of coastal saline soil using laboratory hyperspectral data. Eurasian Soil Science, 40(10), 1095–1101.

    Article  Google Scholar 

  • Shoshany, M., Goldshleger, N., & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: a review. International Journal of Remote Sensing. doi:10.1080/01431161.2013.793872.

    Google Scholar 

  • Shrestha, D. P., Margate, D. E., van der Meer, F., & Anh, H. V. (2005). Analysis and classification of hyperspectral data for mapping land degradation: an application in southern Spain. International Journal of Applied Earth Observation and Geoinformation. doi:10.1016/j.jag.2005.01.001.

    Google Scholar 

  • Singh, A. N. (1994). Monitoring change in the extent of salt-affected soils in northern India. International Journal of Remote Sensing. doi:10.1080/01431169408954320.

    Google Scholar 

  • Stoner, E. R. (1979). Physicochemical, site and bi-directional reflectance factor characteristics of uniformly moist soils. Indiana: Purdue University.

    Google Scholar 

  • Terra, F. S., Demattê, J. A. M., & Rossel, R. A. V. (2015). Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data. Geoderma. doi:10.1016/j.geoderma.2015.04.017.

    Google Scholar 

  • Verma, K. S., Saeena, R. K., Barthwal, A. K., & Deshmukh, S. N. (1994). Remote sensing technique for mapping salt affected soils. International Journal for Remote Sensing. doi:10.1080/01431169408954215.

    Google Scholar 

  • Whiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water content using Gaussian model on soil spectra. Remote Sensing of Environment. doi:10.1016/j.rse.2003.11.009.

    Google Scholar 

  • Wiegand, C. L., Rhoades, J. D., Escobar, D. E., & Everitt, J. H. (1994). Photographic and videographic observations for determining and mapping the response of cotton to soil salinity. Remote Sensing of Environment, 49, 212–223.

    Article  Google Scholar 

  • Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis. doi:10.1080/00103628809368027.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Guilherme Medeiros Pessoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pessoa, L.G.M., Freire, M.B.G.D.S., Wilcox, B.P. et al. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels. Environ Monit Assess 188, 616 (2016). https://doi.org/10.1007/s10661-016-5631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5631-6

Keywords

Navigation