Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels

  • Luiz Guilherme Medeiros Pessoa
  • Maria Betânia Galvão Dos Santos Freire
  • Bradford Paul Wilcox
  • Colleen Heather Machado Green
  • Rômulo José Tolêdo De Araújo
  • José Coelho De Araújo Filho


In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.


Soil salinity Soil sodicity Salinity monitoring Semiarid 


  1. Aldabaa, A. A. A., Weindorf, D. C., Chakraborty, S., Sharma, A., & Li, B. (2015). Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma. doi: 10.1016/j.geoderma.2014.09.011.Google Scholar
  2. Andrade, E. M., Meireles, A. C. M., Alexandre, D. M. B., Palácio, H. A. Q., & Lima, C. A. (2011). Investigação de mudanças do status salino do solo pelo emprego de análise multivariada. Revista Brasileira De Engenharia Agricola e Ambiental. doi: 10.1590/S1415-43662011000400013.Google Scholar
  3. Bannari, A., Guedon, A. M., El-Harti, A., Cherkaoui, F. Z., & El-Ghmari, A. (2008). Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Communications in Soil Science and Plant Annalysis. doi: 10.1080/00103620802432717.Google Scholar
  4. Ben-Dor, E. (2002). Quantitative remote sensing of soil properties. Advances in Agronomy. doi: 10.1016/S0065-2113(02)75005-0.Google Scholar
  5. Ben-Dor, E., Taylor, R. G., Hill, J., Dematte, J. A. M., Whiting, M. L., Chabrillat, S., & Sommer, S. (2008). Imaging spectrometry for soil applications. Advances in Agronomy. doi: 10.1016/S0065-2113(07)00008-9.Google Scholar
  6. Bilgili, A. V., Cullu, M. A., Van Es, H. M., Aydemir, A., & Aydemir, S. (2011). The use of hyperspectral visible and near infrared reflectance spectroscopy for the characterization of salt-affected soils in the Harran plain, Turkey. Arid Land Research Management. doi: 10.1080/15324982.2010.528153.Google Scholar
  7. Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., & Reinsch, T. G. (2006). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma. doi: 10.1016/j.geoderma.2005.04.025.Google Scholar
  8. Cierniewski, J., & Kuśnierek, K. (2010). Influence of several size properties on soil surface reflectance. Quaestiones Geographicae. doi: 10.2478/v10117-010-0002-9.Google Scholar
  9. Clay, D. E., Chang, J., Malo, D. D., Carlson, C. G., Reese, C., Clay, S. A., Ellsbury, M., & Berg, B. (2001). Factors influencing spatial variability of soil apparent electrical conductivity. Communications in Soil Science and Plant Analysis, 32(19–20), 2993–3008.CrossRefGoogle Scholar
  10. Csillag, F., Pasztor, L., & Biehl, L. L. (1993). Spectral band selection for the characterization of salinity status of soils. Remote Sensing of Environment. doi: 10.1016/0034-4257(93)90068-9.Google Scholar
  11. de Albuquerque, U. P., Araujo, E. D., El-Deir, A. C. A., de Lima, A. L. A., Souto, A., Bezerra, B. M., Ferraz, E. M. N., Freire, E. M. X., Sampaio, E., Las-Casas, F. M. G., de Moura, G. J. B., Pereira, G. A., de Melo, J. G., Ramos, M. A., Rodal, M. J. N., Schiel, N., de Lyra-Neves, R. M., Alves, R. R. N., de Azevedo, S. M., Telino, W. R., & Severi, W. (2012). Caatinga revisited: ecology and conservation of an important seasonal dry Forest. Scientific World Journal. doi: 10.1100/2012/205182.Google Scholar
  12. De la Paix, M. J., Lanhai, L., Xi, C., Varenyam, A., Nyongesah, M. J., & Habiyaremye, G. (2013). Physicochemical properties of saline soils and Aeolian dust. Land Degradation & Development. doi: 10.1002/ldr.1148.Google Scholar
  13. Demattê, J. A. M., Silva, M. L. S., Rocha, G. C., Carvalho, L. A., Formaggio, A. R. A. R., & Firme, L. P. (2005). Variações espectrais em solos submetidos à aplicação de torta de filtro. Revista Brasileira De Ciencia Do Solo. doi: 10.1590/S0100-06832005000300001.Google Scholar
  14. Demattê, J. A. M., Nanni, M. R., Formaggio, A. R., & Epiphanio, J. C. N. (2007). Spectral reflectance for the mineralogical evaluation of Brazilian low clay activity soils. International Journal of Remote Sensing. doi: 10.1080/01431160701250408.Google Scholar
  15. Dregne, H. E., & Chou, N. (1992). Global desertification dimensions and costs. In H. E. Dregne (Ed.), Degradation and restoration of arid lands. Lubbock: Texas Tech University.Google Scholar
  16. Elnaggar, A. A., & Noller, J. S. (2010). Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sensing. doi: 10.3390/rs2010151.Google Scholar
  17. Evans, F. H., & Caccetta, P. L. (2000). Broad-scale spatial prediction of areas at risk from dryland salinity. Cartograhy. doi: 10.1080/00690805.2000.9714106.Google Scholar
  18. Fan, X., Pedroli, B., Liu, G., Liu, Q., Liu, H., & Shu, L. (2012). Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development. doi: 10.1002/ldr.1071.Google Scholar
  19. Farifteh, J., Farshad, A., & George, R. J. (2006). Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma. doi: 10.1016/j.geoderma.2005.02.003.Google Scholar
  20. Farifteh, J., Van der Meer, F. D., Atzberger, C., & Carranza, E. J. M. (2007). Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment. doi: 10.1016/j.rse.2007.02.005.Google Scholar
  21. Fernandez-Buces, N., Siebe, C., Cram, S., & Palacio, J. L. (2006). Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former Lake Texcoco, Mexico. Journal of Arid Environments. doi: 10.1016/j.jaridenv.2005.08.005.Google Scholar
  22. Ferreira, J., Pardini, R., Metzger, J. P., Fonseca, C. R., Pompeu, P. S., Sparovek, G., & Louzada, J. (2012). Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. Journal of Applied Ecology. doi: 10.1111/j.1365-2664.2012.02145.x.Google Scholar
  23. Ganjegunte, G. K., Sheng, Z., & Clark, J. A. (2014). Soil salinity and sodicity appraisal by eletromagnetic induction in soils irrigated to grow cotton. Land Degradation & Development. doi: 10.1002/ldr.1162.Google Scholar
  24. Gausman, H. W., Allen, W. A., Cardenas, R., & Bowen, R. L. (1970). Color photos, cotton leaves and soil salinity. Photogrammertic Engineering and Remote Sensing, 36, 454–459.Google Scholar
  25. Goncalves, T. D., & Rodrigues, J. D. (2006). Evaluating the salt content of salt-contaminated samples on the basis of their hygroscopic behaviour. Part I: fundamentals, scope and accuracy of the method. Journal of Cultural Heritage. doi: 10.1016/j.culher.2006.02.009.Google Scholar
  26. Grove, C. I., Hook, S. J., & Taylor, E. P. (1992). Laboratory reflectance spectra of 160 minerals. California: National Aeronautics and Space Administration 355 pp.Google Scholar
  27. Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth form and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49, 77–83.Google Scholar
  28. Hatchell, D. C. (1999). Analytical spectral devices (ASD) technical guide, 4th Edition. Available online at:
  29. Howari, F. M., Goodell, P. C., & Miyamot, S. (2002). Spectral properties of salt crusts formed on saline soils. Journal of Environmental Quality. doi: 10.2134/jeq2002.1453.Google Scholar
  30. Leal, I. R., Da Silva, J. M. C., Tabarelli, M., & Lacher, T. E. (2005). Changing the course of biodiversity conservation in the caatinga of northeastern Brazil. Conservation Biology, 19(3), 701–706.CrossRefGoogle Scholar
  31. Leone, A. P., & Sommer, S. (2000). Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern Apennines (Italy). Remote Sensing of Environment. doi: 10.1016/S0034-4257(99)00110-8.Google Scholar
  32. MacDowell, C. M. (1997). Manual de métodos de análises de solo. Rio de Janeiro: Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA.Google Scholar
  33. Metternicht, G., & Zinck, J. A. (1997). Spatial discrimination of salt- and sodium-affected soil surfaces. International Journal of Remote Sensing. doi: 10.1080/014311697217486.Google Scholar
  34. Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment. doi: 10.1016/S0034-4257(02)00188-8.Google Scholar
  35. Morshed, M. M., Islam, M. T., & Jamil, R. (2016). Soil salinity detection from satellite image analysis: an integratted aproach of salinty indices and field data. Environmental Monitoring and Assessment. doi: 10.1007/s10661-015-5045-x.Google Scholar
  36. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., & Limperis, T. (1977). Geometrical considerations and nomenclature for reflectance. Washington, DC: Department of Commerce/National Bureau of Standards.CrossRefGoogle Scholar
  37. Olveira, L. B., Ribeiro, M. R., Ferraz, F. B., Ferreira, M. G. V. X., & Mermut, A. R. (2004). Mineralogia, micromorfolgia e gênese de solos planossólicos do sertão do araripe, estado de Pernambuco. Revista Brasileira de Ciência do Solo. doi: 10.1590/S0100-06832004000400009.Google Scholar
  38. Palacios-Orueta, A., Pinzon, J. E., Ustin, S. L., & Roberts, D. A. (1999). Remote sensing of soils in the Santa Monica Mountains: II. Hierarchical foreground and background analysis. Remote Sensing of Environment. doi: 10.1016/S0034-4257(98)00106-0.Google Scholar
  39. Pereira, F. A. M., Medina, B. F., Gheyi, H. R., & Etchevers, J. D. (1982). Solos afetados por sais no Nordeste. II. Correlação entre sódio solúvel e intercambiável. Revista Brasileira De Ciencia Do Solo, 6, 167–170.Google Scholar
  40. Pereira, I. M., Andrade, L. A., Sampaio, E., & Barbosa, M. R. V. (2003). Use-history effects on structure and flora of Caatinga. Biotropica. doi: 10.1111/j.1744-7429.2003.tb00275.x.Google Scholar
  41. Queiroz, J. S., & Norton, B. E. (1992). An assessment of indigenous soil classification used in the Caatinga region of Ceara State. Northeast Brazil. Agricultural Systems. doi: 10.1016/0308-521X(92)90101-S.Google Scholar
  42. Rao, B. R. M., Sankar, T. R., Dwivedi, R. S., Thammappa, S. S., Venkataratnam, L., Sharma, R. C., & Das, S. N. (1995). Spectral behavior of salt-affected soils. International Journal of Remote Sensing. doi: 10.1080/01431169508954546.Google Scholar
  43. Ribeiro, M. R., Freire, F. J., & Montenegro, A. A. (2003). Solos halomórficos no Brasil: Ocorrência, gênese, classificação, uso e manejo sustentável. In N. Curi et al. (Eds.), Tópicos em Ciência do Solo (pp. 165–208). Viçosa: Sociedade Brasileira de Ciência do Solo.Google Scholar
  44. Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington, DC: U.S. Department of Agriculture.Google Scholar
  45. Sampaio, E. V. S. B. (1995). Overview of the Brazilian Caatinga. In S. H. Bullock et al. (Eds.), Seasonally dry tropical forests (pp. 36–63). Cambridge: Cambridge University Press.Google Scholar
  46. Schaepman, M. E., Ustin, S. L., Plaza, A. J., Painter, T. H., Verrelst, J., & Liang, S. L. (2009). Earth system science related imaging spectroscopy-an assessment. Remote Sensing of Environment. doi: 10.1016/j.rse.2009.03.001.Google Scholar
  47. Setia, R., Lewis, M., Marschner, P., Raja Segaran, R., Summers, D., & Chittleborough, D. (2013). Severity of salinity accurately detected and classified on a paddok scale with high resolution multispectral satellite imagery. Land Degradation & Development. doi: 10.1002/ldr.1134.Google Scholar
  48. Sharma, B. R., & Bhargava, G. P. (1988). Landsat imagery for mapping saline soils and wetlands in Northwest India. International Journal of Remote Sensing. doi: 10.1016/j.proeng.2012.01.1193.Google Scholar
  49. Shi, Z., & Huang, M. X. (2007). Evaluating reclamation levels of coastal saline soil using laboratory hyperspectral data. Eurasian Soil Science, 40(10), 1095–1101.CrossRefGoogle Scholar
  50. Shoshany, M., Goldshleger, N., & Chudnovsky, A. (2013). Monitoring of agricultural soil degradation by remote-sensing methods: a review. International Journal of Remote Sensing. doi: 10.1080/01431161.2013.793872.Google Scholar
  51. Shrestha, D. P., Margate, D. E., van der Meer, F., & Anh, H. V. (2005). Analysis and classification of hyperspectral data for mapping land degradation: an application in southern Spain. International Journal of Applied Earth Observation and Geoinformation. doi: 10.1016/j.jag.2005.01.001.Google Scholar
  52. Singh, A. N. (1994). Monitoring change in the extent of salt-affected soils in northern India. International Journal of Remote Sensing. doi: 10.1080/01431169408954320.Google Scholar
  53. Stoner, E. R. (1979). Physicochemical, site and bi-directional reflectance factor characteristics of uniformly moist soils. Indiana: Purdue University.Google Scholar
  54. Terra, F. S., Demattê, J. A. M., & Rossel, R. A. V. (2015). Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data. Geoderma. doi: 10.1016/j.geoderma.2015.04.017.Google Scholar
  55. Verma, K. S., Saeena, R. K., Barthwal, A. K., & Deshmukh, S. N. (1994). Remote sensing technique for mapping salt affected soils. International Journal for Remote Sensing. doi: 10.1080/01431169408954215.Google Scholar
  56. Whiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water content using Gaussian model on soil spectra. Remote Sensing of Environment. doi: 10.1016/j.rse.2003.11.009.Google Scholar
  57. Wiegand, C. L., Rhoades, J. D., Escobar, D. E., & Everitt, J. H. (1994). Photographic and videographic observations for determining and mapping the response of cotton to soil salinity. Remote Sensing of Environment, 49, 212–223.CrossRefGoogle Scholar
  58. Yeomans, J. C., & Bremner, J. M. (1988). A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis. doi: 10.1080/00103628809368027.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luiz Guilherme Medeiros Pessoa
    • 1
  • Maria Betânia Galvão Dos Santos Freire
    • 1
  • Bradford Paul Wilcox
    • 2
  • Colleen Heather Machado Green
    • 3
  • Rômulo José Tolêdo De Araújo
    • 1
  • José Coelho De Araújo Filho
    • 4
  1. 1.Department of AgronomyUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  3. 3.U. S. Department of the Interior, Bureau of Land ManagementNational Operations CenterSalt Lake CityUSA
  4. 4.Brazilian Agricultural Research Corporation, EMBRAPARecifeBrazil

Personalised recommendations