A comparative study of occurrence and fate of endocrine disruptors: diethyl phthalate and dibutyl phthalate in ASP- and SBR-based wastewater treatment plants

  • Gita Saini
  • Shalini Pant
  • Shri Om Singh
  • A. A. Kazmi
  • Tanveer Alam


Phthalates are endocrine-disrupting chemicals which affect endocrine system by bio-accumulation in aquatic organisms and produce adverse health effects in aquatic organisms as well as human beings, when come in contact. Present study focuses on occurrence and removal of two phthalates: diethylphthalate (DEP) and dibutylphthalate (DBP) in two full-scale wastewater treatment plants (WWTPs) i.e. sewage treatment plants (STPs) based on well-adopted technologies, activated sludge process (ASP) and sequencing batch reactor (SBR).Gas chromatography-mass spectrometry (GC–MS) analysis was performed for both wastewater and sludge sample for determination and identification of the concentration of these compounds in both STPs by monitoring the STPs for 9 months. It was observed that the concentration of DEP was less than DBP in the influent of ASP and SBR. Average concentrations of DEP and DBP in sludge sample of ASP were found to be 2.15 and 2.08 ng/g, whereas in SBR plant, these values were observed as 1.71 and 2.01 ng/g, respectively. Concerning the removal efficiency of DEP, SBR and ASP plants were found effective with removal efficiency of 91.51 and 91.03 %, respectively. However, in the case of DBP, SBR showed lower removal efficiency (85.42 %) as compared to ASP (92.67 %). Comparative study of both plants proposed that in ASP plant, DBP reduction was higher than the SBR. Fourier transformation infrared (FTIR) analysis also confirmed the same result of sludge analysis for both STPs. Sludge disposal studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) techniques confirmed that sludge of both STPs have high calorific value and can be used as fuel to make fuel-briquettes and bottom ash to make firebricks.


Activated sludge process Endocrine-disrupting compounds (EDCs) Dibutylphthalate Diethylphthalate GC–MS analysis Sequencing batch reactor TGA analysis 



Authors are thankful to the Department of Science and Technology (DST), India, for providing financial help for carrying out this work.


  1. Adibi, J. J., Whyatt, R. M., Williams, P. L., Calafat, A. M., Camann, D., Herrick, R., Nelson, H., Bhat, H. K., Perera, F. P., Silva, M. J., & Hauser, R. (2008). Characterization of Phthalate Exposure among Pregnant Women Assessed by Repeat Air and Urine Samples. Environmental Health Perspectives, 116(4), 467–473.CrossRefGoogle Scholar
  2. Alatriste-Mondragon, F., Iranpourb, R., & Ahringa, B. K. (2003). Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge. Water Research, 37(6), 1260–1269.CrossRefGoogle Scholar
  3. APHA. (2005), Standards Methods for the Examination of Water and Wastewater (21stedn.).Washington, DC: APHA, AWWA and WEF.Google Scholar
  4. Boonyaroj, V., Chiemchaisri, C., Chiemchaisri, W., Theepharaksapan, S., & Yamamoto, K. (2012). Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate. Bioresource Technology, 113, 174–180. doi: 10.1016/j.biortech.2011.12.127.CrossRefGoogle Scholar
  5. Cai, Q. Y., Mo, C. H., Wu, Q. T., Zeng, Q. Y., & Katsoyiannis, Y. (2007). Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China. Chemosphere, 68(9), 1751–1762. doi: 10.1016/j.chemosphere.2007.03.041.CrossRefGoogle Scholar
  6. Cai, Q. Y., Mo, C. H., Wu, Q. T., & Zeng, Q. Y. (2008). Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil–radish (Raphanussativus) system with sewage sludge and compost application. Bioresource Technology, 99(6), 1830–1836. doi: 10.1016/j.biortech.2007.03.035.CrossRefGoogle Scholar
  7. Carballa, M., Omil, F., Lema, J. M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M., & Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–26. doi: 10.1016/j.watres.2004.03.029.CrossRefGoogle Scholar
  8. Chang, B. V., Liao, C. S., & Yuan, S. Y. (2005). Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan. Chemosphere, 58(11), 1601–1607. doi: 10.1016/j.chemosphere.2004.11.031.CrossRefGoogle Scholar
  9. Chang, B. V., Yang, C. M., Cheng, C. H., & Yuan, S. Y. (2004). Biodegradation of phthalate esters by two bacteria strains. Chemosphere, 55(4), 533–538. doi: 10.1016/j.chemosphere.2004.11.031.CrossRefGoogle Scholar
  10. Chatterjee, S., & Karlovsky, P. (2010). Removal of the endocrine disrupter butyl benzyl phthalatefrom the environment. Applied Microbial Biotechnology, 87(1), 61–73. doi: 10.1007/s00253-010-2570-y.CrossRefGoogle Scholar
  11. Chen, W. L., & Sung, H. H. (2005). The toxic effect of phthalate esters on immune responses of giant freshwater prawn (Macrobrachiumrosenbergii) via oral treatment. Aquatic Toxicology, 74(2), 160–171. doi: 10.1016/j.aquatox.2005.05.008.CrossRefGoogle Scholar
  12. Clara, M., Windhofer, G., Hartl, W., Braun, K., Simon, M., Gans, O., Scheffknecht, C., & Chovanec, A. (2010). Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere, 78(9), 1078–1084. doi: 10.1016/j.chemosphere.2009.12.052.CrossRefGoogle Scholar
  13. Dargnat, C., Tail, M. J., Chevreuil, M., & Blanchard, M. (2009). Phthalate removal throughout wastewater treatment plant Case study of Marne Aval station (France). Science of the Total Environment, 407(4), 1235–1244. doi: 10.1016/j.scitotenv.2008.10.027.CrossRefGoogle Scholar
  14. EPA Appendix A to part 136. (2002). Method for organic chemical analysis of municipal and industrial wastewater. Method 606— Phthalate ester.Google Scholar
  15. Gao, D., Li, Z., Wen, Z., Ren, N. (2014). Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere, 95, 24– Scholar
  16. Grube, M., Lin, J. G., Lee, P. H., & Kokorevicha, S. (2006). Evaluation of sewage sludge-based compost by FTIR spectroscopy. Geoderma, 130(3-4), 324–333. doi: 10.1016/j.geoderma.2005.02.005.CrossRefGoogle Scholar
  17. Huang, M. Z., Ma, Y. W., Wang, Y., Wan, J. Q., & Zhang, H. P. (2010). The fate of di-n-butyl phthalate in a laboratory-scale anaerobic/anoxic/oxic wastewater treatment process. Bioresource Technology, 101(20), 7767–7772. doi: 10.1016/j.biortech.2010.05.028.CrossRefGoogle Scholar
  18. Kazmi, A. A., Tyagi, V. K., Trivedi, R. C., & Kumar, A. (2008). Coliforms removal in full-scale activated sludge plants in India. Journal of Environmental Management, 87(3), 415–419. doi: 10.1016/j.jenvman.2007.01.017.CrossRefGoogle Scholar
  19. Kolarik, B., Bornehag, C. G., Naydenov, K., Sundell, J., Stavova, P., & Nielsen, O. F. (2008). The concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family. Atmospheric Environment, 42(37), 8553–8559. doi: 10.1016/j.atmosenv.2008.08.028.CrossRefGoogle Scholar
  20. Lau, T. K., Chu, W., & Graham, N. (2005). The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study. Chemosphere, 60(8), 1045–1053. doi: 10.1016/j.chemosphere.2005.01.022.CrossRefGoogle Scholar
  21. Lu, Y., Tang, F., Wang, Y., Zhao, J., Zeng, X., Luo, Q., & Wang, L. (2009). Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcussp. L4 isolated from activated sludge. Journal of Hazardous Materials, 168(2-3), 938–943. doi: 10.1016/j.jhazmat.2009.02.126.CrossRefGoogle Scholar
  22. Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., & Rintala, J. A. (2003). Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant. Water Research, 37(6), 1385–139.CrossRefGoogle Scholar
  23. Marttinen, S. K., Ruissalo, M., & Rintala, J. A. (2004). Removal of bis(2-ethylhexyl) phthalate from reject water in a nitrogen-removing sequencing batch reactor. Journal of Environmental Management, 73(2), 103–109. doi: 10.1016/j.jenvman.2004.05.011.CrossRefGoogle Scholar
  24. Medellin-Castillo, N.A. Ocampo-Perez, R., Leyva-Ramos, R., Sanchez-Polo M., Rivera-Utrilla, J., & Mendez-Diaz, J. D. (2013). Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Science of the Total Environment, 442, 26– 10.1016/j.scitotenv.2012.10.062.
  25. Mohan, S. V., Shailaja, S., Krishna, M. R., & Sarma, P. N. (2007). Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study. Journal of Hazardous Materials, 146(1-2), 278–282. doi: 10.1016/j.jhazmat.2006.12.020.CrossRefGoogle Scholar
  26. Mondal, B., Srivastava, V. C., & Mall, I. D. (2012). Electrochemical treatment of dye-bath effluent by stainless steel electrodes: multiple response optimization and residue analysis. Journal of Environmental Science and Health, Part A, 47(13), 2040–2051. doi: 10.1080/10934529.2012.695675.CrossRefGoogle Scholar
  27. Na, S., Ahn, Y. G., Cui, M., & Khim, J. (2012). Significant diethyl phthalate (DEP) degradation by combined advanced oxidation process in aqueous solution. Journal of Environmental Management, 101, 104–110. doi: 10.1016/j.jenvman.2012.01.028.CrossRefGoogle Scholar
  28. Ozer, E.T., Osman, B., Kara, A., Bes, N., Irli, S., Gucer, E., & Sözeri, H. (2012). Removal of diethyl phthalate from aqueous phase using magnetic poly (EGDMA–VP) beads. Journal of Hazardous Materials, 229– 230, 20– 28. 10.1016/j.jhazmat.2012.05.037.
  29. Parida, S., Panda, M., Parija, A., & Das, S. C. (2014). Thermal studies of different agrowaste reinforced novolac composites prepared under isothermal conditions. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5, 1580.Google Scholar
  30. Prasad, B., & Suresh, S. (2012). Biodegradation of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and their mixture by VariovoraxSp. International Journal of Environmental Science and Development, 3(3), 283–288.CrossRefGoogle Scholar
  31. Roslev, P., Vorkamp, K., Aarup, J., Frederiksen, K., & Nielsen, P. H. (2007). Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Research, 41(5), 969–976. doi: 10.1016/j.watres.2006.11.049.CrossRefGoogle Scholar
  32. Rudel, R. A., Dodson, R. E., Morello-Frosch, L. J. P. R., Zuniga, D. E. C. M. M., Yau, A. Y., Just, A. C., & Brody, J. G. (2010). Semivolatile endocrine-disrupting compounds in paired indoor and outdoor air in two Northern California Communities. Environmental Science Technology, 44(17), 6583–6590.CrossRefGoogle Scholar
  33. Silva, J. D. O., Filho, G. R., Ribeiro, S. D., Vieira, J. G., & Cerqueira, D. A. (2012). Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil. ThermochimicaActa, 528, 72–75. doi: 10.1016/j.tca.2011.11.010.CrossRefGoogle Scholar
  34. Singh, S., Srivastava, V. C., & Mall, I. D. (2013). Mechanistic study of electrochemical treatment of basicgreen 4 dye with aluminum electrodes through zetapotential, TOC, COD and color measurements, andcharacterization of residues. RSC Advanced, 3(37), 16426–16439. doi: 10.1039/c3ra41605d.CrossRefGoogle Scholar
  35. Takeuchi, S., Iida, M., Kobayashi, S., Jin, K., Matsuda, T., & Kojim, H. (2005). Differential effects of phthalate esters on transcriptional activities via human estrogen receptors and androgen receptor. Toxicology, 210(2-3), 223–233. doi: 10.1016/j.tox.2005.02.002.CrossRefGoogle Scholar
  36. Tingting, M. A., Teng, Y., Christie, P., Luo, Y., Chen, Y., Ye, M., & Huang, Y. (2013). A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils. Frontiers of Environmental Science & Engineering, 7(1), 31–42. doi: 10.1007/s11783-012-0463-2.CrossRefGoogle Scholar
  37. Xian, Q., Hu, L., Chen, H., Chang, Z., & Zou, H. (2010). Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. Journal of Environmental Management, 91(12), 2657–2661. doi: 10.1016/j.jenvman.2010.07.036.CrossRefGoogle Scholar
  38. Xu, B., Gao, N. Y., Sun, X. F., Xia, S. J., Rui, M., Simonnot, M. O., Causserand, C., & Zhao, J. F. (2007). Photochemical degradation of diethyl phthalate with UV/H2O2. Journal of Hazardous Materials B, 139(1), 132–139. doi: 10.1016/j.jhazmat.2006.06.026.CrossRefGoogle Scholar
  39. Yang, G. P., Zhao, X. K., Sun, X. J., & Lu, X. L. (2005). Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. Journal of Hazardous Materials, B 126(1-3), 112–118. doi: 10.1016/j.jhazmat.2005.06.014.CrossRefGoogle Scholar
  40. Yuan, S. Y., Liu, C., Liao, C. S., & Chang, B. V. (2002). Occurrence and microbial degradation of phthalate esters In Taiwan river sediments. Chemosphere, 49(10), 1295–1299.CrossRefGoogle Scholar
  41. Zeng, F., Cui, K., Li, X., Fud, J., & Sheng, G. (2004). Biodegradation kinetics of phthalate esters by pseudomonas fluoresences FS1. Process Biochemistry, 39(9), 1125–1129. doi: 10.1016/S0032-9592(03)00226-7.CrossRefGoogle Scholar
  42. Zhou, H., Huang, X., Wang, X., Zhi, X., Yang, C., Wen, X., Wang, Q., Tsuno, H., & Tanaka, H. (2010). Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants of Beijing, China. Environmental Monitoring Assessment, 161(1-4), 107–121. doi: 10.1007/s10661-008-0731-6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gita Saini
    • 1
  • Shalini Pant
    • 2
  • Shri Om Singh
    • 1
  • A. A. Kazmi
    • 1
  • Tanveer Alam
    • 3
  1. 1.Department of Civil EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.S. D. Degree CollegeRoorkeeIndia
  3. 3.D. A. V. P. G. CollegeRoorkeeIndia

Personalised recommendations