Optimizing cultivation of agricultural products using socio-economic and environmental scenarios

  • Behnaz. RaheliNamin
  • Samar. Mortazavi
  • Abdolrassoul Salmanmahiny


The combination of degrading natural conditions and resources, climate change, growing population, urban development, and competition in a global market complicate optimization of land for agricultural products. The use of pesticides and fertilizers for crop production in the agricultural fields has become excessive in the recent years and Golestan Province of Iran is no exception in this regard. For this, effective management with an efficient and cost-effective practice should be undertaken, maintaining public service at a high level and preserving the environment. Improving the production efficiency of agriculture, efficient use of water resources, decreasing the use of pesticides and fertilizers, improving farmer revenue, and conservation of natural resources are the main objectives of the allocation, ranking, and optimization of agricultural products. The goal of this paper is to use an optimization procedure to lower the negative effects of agriculture while maintaining a high production rate, which is currently a gap in the study area. We collected information about fertilizer and pesticide consumption and other data in croplands of eastern Golestan Province through face-to-face interviews with farmers to optimize cultivation of the agricultural products. The toxicity of pesticides according to LD50 was also included in the optimization model. A decision-support software system called multiple criteria analysis tool was used to simultaneously minimize consumption of water, chemical fertilizers, and pesticides and maximize socio-economic returns. Three scenarios for optimization of agricultural products were generated that alternatively emphasized on environmental and socio-economic goals. Comparing socio-economic and environmental performance of the optimized agricultural products under the three scenarios illustrated the conflict between social, economic, and environmental objectives. Of the six crops studied (wheat, barley, rice, soybeans, oilseed rape, and maize), rice ranked second in the social and fifth in the economic scenarios. Soybeans had the lowest rank for economic and social scenarios and its cultivation in the study area, in terms of economic and social goals, was rejected by the model. However, cultivation of soybeans continues in the area as a responsibility to cater for the major need of the country. Because of subsidized prices of water, fertilizers, and pesticides, the use of these items are far from optimized in the current agricultural practices in the area.


Optimizing Multiple criteria analysis Agricultural products Fertilizers Pesticides Golestan Province 


  1. Abdollahzadeh, G., Sharifzadeh, M. S., & Damalas, C. A. (2015). Perceptions of the beneficial and harmful effects of pesticides among Iranian rice farmers influence the adoption of biological control. Crop Protection, 75, 124–131. doi: 10.1016/j.cropro.2015.05.018.CrossRefGoogle Scholar
  2. Abendroth, L. J., Elmore, R. W., Boyer, M. J., & Marlay, S. K. (2011). Corn growth and development, PMR 1009. Ames, Iowa: Iowa State University Extension.Google Scholar
  3. Adekanmbi, O., & Olugbara, O. (2015). Multiobjective optimization of crop-mix planning using generalized differential evolution algorithm. Journal of Agricultural Science and Technology, 17, 1103–1114.Google Scholar
  4. Afrakhteh, H., Hajipour, M., & Romiani, A. (2015). Optimizing patterns for cultivating agricultural products toward sustainable development (case study: Sahl-Abad plain). Journal of Research and Rural. Planning, 4, 13–17.Google Scholar
  5. Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2, 1–12. doi: 10.2478/v10102-009-0001-7.CrossRefGoogle Scholar
  6. Allahyari, M. S., Chizari, M., & Homaee, M. (2008). Perceptions of Iranian agricultural extension professionals toward sustainable agriculture concepts. Journal of agriculture and social sciences, 4, 101–106.Google Scholar
  7. Amir, A., & Fisher, F. M. (1999). Analyzing agricultural demand for water with an optimizing model. Agricultural Systems, 61, 45–56. doi: 10.1016/S0308-521X(99)00031-1.CrossRefGoogle Scholar
  8. Aznar, J., Guijarro, F., & Moreno-Jiménez, J. M. (2011). Mixed valuation methods: a combined AHP-GP procedure for individual and group multicriteria agricultural valuation. Annals of Operations Research, 90, 221–238. doi: 10.1007/s10479-009-0527-2.CrossRefGoogle Scholar
  9. Bausch, J. C., Bojrquez-Tapi, L., & Eakin, H. (2014). Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainability Science. doi: 10.1007/s11625-014-0243-y.Google Scholar
  10. Behnampour, N., Hajizadeh, E., Zayer, I. F., & Semnan, I. S. (2014). Modeling of influential predictors of gastric cancer incidence rates in Golestan Province, North Iran. Asian Pacific Journal of Cancer Prevention, 15, 1111–1117. doi: 10.7314/APJCP.2014.15.3.1111.CrossRefGoogle Scholar
  11. Benli, B., & Kodal, S. (2003). A non-linear model for farm optimization with adequate and limited water supplies: application to the south-east Anatolian project (GAP) region. Agricultural Water Management, 62, 187–203. doi: 10.1016/S0378-3774(03)00095-7.CrossRefGoogle Scholar
  12. Bhatt, R., Kukal, S. S., Busari, M. A., Arora, S., & Yadav, M. (2016). Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research, 4, 64–74. doi: 10.1016/j.iswcr.2015.12.001.CrossRefGoogle Scholar
  13. Bournaris, T. H., & Papathanasiou, J. (2012). A DSS for planning the agricultural production. International Journal of Business Innovation and Research, 6(1), 117–134.CrossRefGoogle Scholar
  14. Bournaris, T., Papathanasiou, J., Manos, B., Kazakis, N., & Voudouris, K. (2015). Support of irrigation water use and eco-friendly decision process in agricultural production planning. Operational Research., 15(2), 289–306. doi: 10.1007/s12351-015-0178-9.
  15. Bürger, J., Günther, A., de Mol, F., & Gerowitt, B. (2012). Analysing the influence of crop management on pesticide use intensity while controlling for external sources of variability with linear mixed effects models. Agricultural Systems, 111, 13–22. doi: 10.1016/j.agsy.2012.05.002.CrossRefGoogle Scholar
  16. Caro, M., Colomb, B., & Aveline, A. (2013). A guide for choosing the most appropriate method for multi-criteria assessment of agricultural systems according to decision-makers’ expectations. Agricultural Systems, 115, 51–62. doi: 10.1016/j.agsy.2012.09.011.CrossRefGoogle Scholar
  17. Chen, C. J., & Huang, C. C. (2004). A multiple criteria evaluation of high-tech industries for the science-based industrial park in Taiwan. Information & Management, 41(7), 839–851.CrossRefGoogle Scholar
  18. Cheragh-Ali, M., Rezaie, M., Khorshid-kolaie, Z. (2015). Golestan fourth rank in water crisis. Thursday 18 July. Nwes. Mehr News Agency, 2779978. In Persian.Google Scholar
  19. Cochran, W. G. (1977). Sampling techniques. New York: Wiley.Google Scholar
  20. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. doi: 10.1007/bf02310555.CrossRefGoogle Scholar
  21. Environews Forum (1999). Killer environment, vol 107. Environ Health Perspect.Google Scholar
  22. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478, 337–342. doi: 10.1038/nature10452.CrossRefGoogle Scholar
  23. GAJO (Golestan Agri-Jihad Organization) (2015). Statistical yearbook of cropping products. Iran: Deputy of Planning and Economic Affairs, Office of Statistics and Information Technology, Golestan Agri-Jihad Organization.Google Scholar
  24. Gebrezgabher, S. A., Meuwissen, M. P. M., & Lansink, A. G. J. M. O. (2014). A multiple criteria decision making approach to manure management systems in the Netherlands. European Journal of Operational Research, 232, 643–653. doi: 10.1016/j.ejor.2013.08.006.CrossRefGoogle Scholar
  25. Ghasemkhai, H. (2014). Hazards of pesticides in agricultural products. Jamejam Newspaper, 622. In Persian.Google Scholar
  26. Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1, 190–206.CrossRefGoogle Scholar
  27. Hafeez, K., Zhang, Y. B., & Malak, N. (2002). Determining key capabilities of a firm using analytic hierarchy process. International Journal of Production Economics, 76, 39–51.CrossRefGoogle Scholar
  28. Hashemi, S. M., & Damalas, C. A. (2011). Farmers’ perceptions of pesticide efficacy: reflections on the importance of pest management practices adoption. Journal of Sustainable Agriculture, 35, 69–85.CrossRefGoogle Scholar
  29. Hashemi, S. M., Rostami, R., Hashemi, M. K., & Damalas, C. A. (2012). Pesticide use and risk perceptions among farmers in Southwest Iran. Human and Ecological Risk Assessment, 18, 456–470. doi: 10.1080/10807039.2012.652472.CrossRefGoogle Scholar
  30. Heilman, P., Duan, Y., Miller, R., Guertin, D. P. (2003). Calculating the cost of reducing erosion from a small rangeland watershed. Proceedings First Interagency Conference on Research in the Watersheds, Benson, AZ, 27–30 October, 398–404.Google Scholar
  31. Higgins, A. J. A. (2003). Comparison between existing and new heuristics using the knapsack problem. In ASOR Queensland.Google Scholar
  32. Hosseini, S. S., & Aminravan, M. (2015). Investigating the effect of supportive policies on cotton acreage in Golestan Province. Iranian Journal of Agriculture Economics and Development. Research, 46, 1–10.Google Scholar
  33. Huan, N. H., Thiet, L. V., Chien, H. V., & Heong, K. L. (2005). Farmers’ participatory evaluation of reducing pesticides, fertilizers and seed rates in rice farming in the Mekong Delta, Vietnam. Crop Protection, 24, 457–464. doi: 10.1016/j.cropro.2004.09.013.CrossRefGoogle Scholar
  34. IRNA (2014). Golestan soybeans and a lack of agricultural equipment. Saturday, September 6, 2014. http://www.irna.ir/fa/News/81301666/%DA.
  35. Jens, C. (1999). Branch and bound algorithms—principles and examples (PDF). University of Copenhagen.Google Scholar
  36. Kaushik, A., Sharma, H. R., Jain, S., Dawra, J., & Kaushik, C. P. (2010). Pesticide pollution of river Ghaggar in Haryana, India. Environmental Monitoring and Assessment., 160, 61. doi: 10.1007/s10661-008-0657-z.CrossRefGoogle Scholar
  37. Laborte, A. G., Ittersum, M. K. V., & Berg, M. M. V. (2007). Multi-scale analysis of agricultural development: a modeling approach for Ilocos Norte, Philippines. Agricultural Systems, 94, 862–873. doi: 10.1016/j.agsy.2006.11.011.CrossRefGoogle Scholar
  38. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., & Xu, J. (2001). The causes of land use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261–269. doi: 10.1016/S0959-3780(01)00007-3.CrossRefGoogle Scholar
  39. Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica, 28, 497–520. doi: 10.2307/1910129.CrossRefGoogle Scholar
  40. Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-West Poland. Environmental Monitoring and Assessment, 188, 172. doi: 10.1007/s10661-016-5167-9.CrossRefGoogle Scholar
  41. Liu, Y. S., Zhang, F. G., & Zhang, Y. W. (2009). Appraisal of typical rural development models during rapid urbanization in the eastern coastal region of China. Journal of Geographical Sciences, 19, 557–567. doi: 10.1007/s11442-009-0557-3.CrossRefGoogle Scholar
  42. Malekzadeh, R., Derakhshan, M., & Malekzadeh, Z. (2009). Gastric cancer in Iran: epidemiology and risk factors. Archives of Iranian medicine. Journal, 12, 576–583.Google Scholar
  43. Manos, B. D., Papathanasiou, J., Bournaris, T. H., & Voudouris, K. (2010). A DSS for sustainable development and environmental protection of agricultural regions. Environmental Monitoring and Assessment, 164, 43–52. doi: 10.1007/s10661-009-0873-1.CrossRefGoogle Scholar
  44. Manos, B., Chatzinikolaou, P., Kiomourtzi F. (2013). Sustainable optimization of agricultural production. ICESD 2013: January 19–20, Dubai, UAE, APCBEE Procedia 5, 410–415.Google Scholar
  45. Marinoni, O., Higgins, A., Hajkowicz, S., & Collins, K. (2009). The multiple criteria analysis tool (MCAT): a new software tool to support environmental investment decision making. Environmental Modelling & Software, 24, 153–164. doi: 10.1016/j.envsoft.2008.06.015.CrossRefGoogle Scholar
  46. Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. Chichester, England: Wiley.Google Scholar
  47. Mehregan, F., Keramatzadeh, A., Eshraghy, F., & Shirani, F. (2013). Estimating the response cultivation model of cotton in Golestan Province of Iran. International Journal of Agriculture and Crop Sciences, 6, 1194–1198.Google Scholar
  48. Mohamed, Z., Terano, R., Sharifuddin, J., & Rezai, G. (2016). Determinants of paddy farmer’s unsustainability farm practices. Agriculture and Agricultural Science Procedia, 9, 191–196. doi: 10.1016/j.aaspro.2016.02.120.CrossRefGoogle Scholar
  49. Mousavi, S., Gouya, M., Ramazani, R., et al. (2009). Cancer incidence and mortality in Iran. Annals of Oncology, 20, 556–563. doi: 10.1093/annonc/mdn642.CrossRefGoogle Scholar
  50. Mózner, Z., Tabi, A., & Csutora, M. (2012). Modifying the yield factor based on more efficient use of fertilizer—the environmental impacts of intensive and extensive agricultural practices. Ecological Indicators, 16, 58–66. doi: 10.1016/j.ecolind.2011.06.034.CrossRefGoogle Scholar
  51. Muazu, A., Yahya, A., Ishak, W. I. W., & Khairunniza-Bejo, S. (2014). Yield prediction modeling using data envelopment analysis methodology for direct seeding, wetland paddy cultivation. Agriculture and Agricultural Science Procedia, 2, 181–190.CrossRefGoogle Scholar
  52. Nekahi, M. Z., Soltani, A., Siahmarguee, A., & Bagherani, N. (2014). Evaluation on factors affecting weeds population density and yield loss of wheat: a case study in Golestan province Sarmahale village in Bandargaz. AGROECOLOGY, 6, 424.Google Scholar
  53. Nixon, J. D., Dey, P. K., Davies, P. A., Sag, S., & Berry, R. F. (2014). Supply chain optimisation of pyrolysis plant deployment using goal programming. Energy, 68, 262–271. doi: 10.1016/j.energy.2014.02.058.CrossRefGoogle Scholar
  54. Pramanik, M. K. (2016). Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2 (56). doi: 10.1007/s40808-016-0116-8
  55. Reidsma, P., Bakker, M. M., Kanellopoulos, A., Alam, S. J., Paas, W., Kros, J., & Vries, W. D. (2015). Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level. Agricultural Systems, 141, 160–173. doi: 10.1016/j.agsy.2015.10.009.CrossRefGoogle Scholar
  56. Rezaei-Moghaddam, K., & Karami, E. (2008). A multiple criteria evaluation of sustainable agricultural development models using AHP. Environment, Development and Sustainability, 10, 407–426. doi: 10.1007/s10668-006-9072-1.CrossRefGoogle Scholar
  57. Ruben, R., Moll, H., & Kuyvenhoven, A. (1998). Integrating agricultural research and policy analysis: analytical framework and policy applications for bio-economic modelling. Agricultural Systems, 58, 331–349. doi: 10.1016/S0308-521X(98)00034-1.CrossRefGoogle Scholar
  58. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  59. Sabuhi, M., Yaghoubi, M., & Esfandiari, M. (2012). A survey on water use efficiency of Rice producers in Kamfirouz region, Fars Province, Iran. International Journal of Applied Operational Research, 2(3), 45–53.Google Scholar
  60. Salman, A. Z., Al-Karablieh, E. K., & Fisher, F. M. (2001). An inter-seasonal agricultural water allocation system (SAWAS. Agricultural Systems, 68, 233–252. doi: 10.1016/S0308-521X(01)00010-5.CrossRefGoogle Scholar
  61. Salmanmahiny, A. et al. (2015). Studies of Land Use Planning for Golestan Province, Management and Planning Organization of Golestan, 8, 369.Google Scholar
  62. Sha-sha, L., Yan-sui, L., Hua-lou, L., & Xing-liang, G. (2013). Agricultural production structure optimization: a case study of major grain producing areas, China. Journal of Integrative Agriculture, 12, 184–197. doi: 10.1016/S2095-3119(13)60218-X.CrossRefGoogle Scholar
  63. Siciliano, G. (2009). Social multicriteria evaluation of farming practices in the presence of soil degradation. A case study in southern Tuscany, Italy. Environment, Development and Sustainability, 11, 1107–1133. doi: 10.1007/s10668-008-9169-9.CrossRefGoogle Scholar
  64. Statistical center of Golestan, SYG (2012-2013). Land and climate. Statistical center of Iran, Vol. 4.Google Scholar
  65. Sustainable Ecosystems, CSIRO (2007). Multi criteria analysis tool (MCAT) user guide (beta version). Australia: St Lucia Qld.Google Scholar
  66. Timprasert, S., Datta, A., & Ranamukhaarachchi, S. L. (2014). Factors determining adoption of integrated pest management by vegetable growers in Nakhon Ratchasima Province, Thailand. Crop Protection, 62, 32–39.CrossRefGoogle Scholar
  67. U.S. Geological Survey. Circular 1225. Reston, VA: USGS (1999). The quality of our nation’s waters—nutrients and pesticides. http://water.usgs.gov/pubs/circ/circ1225/.
  68. Vallabhaneni, R., & Wurtzel, E. T. (2009). Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiology, 150, 562–572. doi: 10.1104/pp.109.137042.CrossRefGoogle Scholar
  69. Vieira, D. C., Noldin, J. A., Deschamps Jr., F. C., & Ch, R. (2016). Ecological risk analysis of pesticides used on irrigated rice crops in southern Brazil. Chemosphere, 162, 48–54. doi: 10.1016/j.chemosphere.2016.07.046.CrossRefGoogle Scholar
  70. Wang, X. H., Yu, S., & Huang, G. H. (2004). Land allocation based on integrated GIS optimization modeling at a watershed level. Landscape and Urban Planning, 66, 61–74. doi: 10.1016/S0169-2046(03)00095-1.CrossRefGoogle Scholar
  71. WHO (2009). The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. IPCS. International Programme on Chemical Safety, World Health Organization, 1211 Geneva 27, SwitzerlandGoogle Scholar
  72. Ying, Z. H., Hongqi, Z. H., Dongying, N., & Wei, S. (2012). Agricultural land use optimal allocation system in developing area: application to Yili watershed, Xinjiang region. Chinese Geographical Science, 22(2), 232–244. doi: 10.1007/s11769-012-0530-4.CrossRefGoogle Scholar
  73. Zeleny, M. (1973). Compromise programming. In J. L. Cocharane & M. Zeleny (Eds.), Multiple criteria decision making. Columbia: University of Southern Carolina Press.Google Scholar
  74. Zhang, J. L., Li, Y. P., Wang, C. X., & Huang, G. H. (2015). An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources. Agricultural Water Management, 152, 72–90. doi: 10.1016/j.agwat.2014.12.014.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Behnaz. RaheliNamin
    • 1
  • Samar. Mortazavi
    • 1
  • Abdolrassoul Salmanmahiny
    • 2
  1. 1.Department of Environment, Faculty of Natural Resources & EnvironmentMalayer UniversityHamedanIran
  2. 2.Department of EnvironmentGorgan University of Agricultural Sci. & Natural ResourcesGorganIran

Personalised recommendations