Advertisement

Development of a Web-based GIS monitoring and environmental assessment system for the Black Sea: application in the Danube Delta area

  • Ilias N. Tziavos
  • Thomas K. Alexandridis
  • Borys Aleksandrov
  • Agamemnon Andrianopoulos
  • Ioannis D. Doukas
  • Ion Grigoras
  • Vassilios N. Grigoriadis
  • Ioanna D. Papadopoulou
  • Paraskevas Savvaidis
  • Argyrios Stergioudis
  • Liliana Teodorof
  • Georgios S. Vergos
  • Lyudmila Vorobyova
  • Georgios C. Zalidis
Article
  • 318 Downloads

Abstract

In this paper, the development of a Web-based GIS system for the monitoring and assessment of the Black Sea is presented. The integrated multilevel system is based on the combination of terrestrial and satellite Earth observation data through the technological assets provided by innovative information tools and facilities. The key component of the system is a unified, easy to update geodatabase including a wide range of appropriately selected environmental parameters. The collection procedure of current and historical data along with the methods employed for their processing in three test areas of the current study are extensively discussed, and special attention is given to the overall design and structure of the developed geodatabase. Furthermore, the information system includes a decision support component (DSC) which allows assessment and effective management of a wide range of heterogeneous data and environmental parameters within an appropriately designed and well-tested methodology. The DSC provides simplified and straightforward results based on a classification procedure, thus contributing to a monitoring system not only for experts but for auxiliary staff as well. The examples of the system’s functionality that are presented highlight its usability as well as the assistance that is provided to the decision maker. The given examples emphasize on the Danube Delta area; however, the information layers of the integrated system can be expanded in the future to cover other regions, thus contributing to the development of an environmental monitoring system for the entire Black Sea.

Keywords

Environmental monitoring Decision support component Geodatabase development Satellite earth observation data Web-based GIS 

Notes

Acknowledgments

This research was funded by the EU—Joint Operational Programme “Black Sea 2007–2013” in the frame of the project “Development of a common intraregional monitoring system for the environmental protection and preservation of the Black Sea—ECO-Satellite.”

References

  1. Aden, C., Schmidt, G., Schonrock, S., & Schroder, W. (2010). Data analyses with the WebGIS WaldIS. European Journal of Forest Research, 129(3), 489–497.CrossRefGoogle Scholar
  2. Alexandridis, T. K., Topaloglou, C. A., Lazaridou, E., & Zalidis, G. C. (2008). The performance of satellite images in mapping aquacultures. Ocean and Coastal Management, 51(8–9), 638–644.CrossRefGoogle Scholar
  3. Alexandridis, T. K., Lazaridou, E., Tsirika, A., & Zalidis, G. C. (2009). Using earth observation to update a Natura 2000 habitat map for a wetland in Greece. Journal of Environmental Management, 90(7), 2243–2251.CrossRefGoogle Scholar
  4. Alexandridis, T.K., Aleksandrov, B.G., Monachou, S., Kalogeropoulos, C., Strati, S., Vorobyova, L., Bogatova, Y., Grigoriadis, V.N., Vergos, G.S., & Topaloglou, C. (2013). Monitoring water quality parameters in the marine area of Danube Delta using satellite remote sensing: preliminary results. In: D.G. Hadjimitsis, K. Themistocleous, S. Michaelides, G. Papadavid (Eds), First International Conference on Remote Sensing and Geoinformation of Environments, SPIE 8795, 87950P-8, doi: 10.1117/12.2027210.Google Scholar
  5. Alexandrov, B.G. (1998). The function of wetlands. In: S. Hobson, L.-D. Mee, S., Morgan (Eds.) The Black Sea in Crisis (pp. 84–89), World Scientific.Google Scholar
  6. Andersen, O.B. (2010). The DTU10 Global Gravity field and mean sea surface. Presented at the Second international symposium of the gravity field of the Earth (IGFS2010), Fairbanks, Alaska.Google Scholar
  7. Andersen, O. B., & Knudsen, P. (1998). Global marine gravity field from the ERS1 and Geosat geodetic mission. Journal of Geophysical Research, 103, 8129–8137.CrossRefGoogle Scholar
  8. Armenakis, C., Nirupama, N., Zalidis, G., & Alexandridis, T. K. (2014). Degradation of coastal wetlands using examples from Greece and Canada: a review. International Journal of Ecology & Development, 29(3), 87–109.Google Scholar
  9. Arslan, N. T., & Okmen, M. (2006). The economical and international dimensions of the environmental problems in the Black Sea region and the role of the voluntary organizations. Building and Environment, 41(8), 1040–1049.CrossRefGoogle Scholar
  10. Askew, C. (1987). Shellfish cultivation in Greece. Field Document No 6. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  11. Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., & Weatherall, P. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371.CrossRefGoogle Scholar
  12. Burger, J. (2008). Environmental management: integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands. The Science of the Total Environment, 400(0), 6–19.CrossRefGoogle Scholar
  13. D’Alimonte, D., Zibordi, G., Berthon, J. F., Canuti, E., & Kajiyama, T. (2012). Performance and applicability of bio-optical algorithms in different European seas. Remote Sensing of Environment, 124, 402–412.CrossRefGoogle Scholar
  14. DBR (2016). Danube Biosphere Reserve (DBR). http://dbr.org.ua/en/home. Accessed on 17/06/2016.
  15. DDBR (2016). Danube Delta Biosphere Reserve (DDBR). Short history of the nature’s protection in the Danube Delta. http://www.ddbra.ro/en/danube-delta-biosphere-reserve/danube-delta/biodiversity/short-history-of-the-nature-s-protection-in-the-danube-delta-a916. Accessed on 17/06/2016.
  16. De Castro, A. F., Amaro, V. E., Grigio, A. M., & Cavalcante, R. G. (2011). Modeling and development of a WebGIS for environmental monitoring of coastal areas that are influenced by the oil industry. Journal of Coastal Research, Special Issue, 64, 1643–1647.Google Scholar
  17. Dineva, S. (2005). Long-term evolution and trends of the hydrological and hydrochemical parameters in Bulgarian Black Sea waters during the period 1992-2000. Water Science and Technology, 51(11), 19–26.Google Scholar
  18. Dunea, D., Iordache, S., Pohoata, A., & Neagu Frasin, L. B. (2014). Investigation and selection of remediation technologies for petroleum-contaminated soils using a decision support system. Water Air & Soil Pollution, 225, 2035.CrossRefGoogle Scholar
  19. European Communities (2009). Common implementation strategy for the Water Framework Directive (2000/60/EC). WFD CIS Guidance Document No7, Luxemburg: European Communities.Google Scholar
  20. Ferraro, G., Meyer-Roux, S., Muellenhoff, O., Pavliha, M., Svetak, J., Tarchi, D., & Topouzelis, K. (2009). Long term monitoring of oil spills in European seas. International Journal of Remote Sensing, 30(3), 627–645.CrossRefGoogle Scholar
  21. Fisher, N. I., Lewis, T., & Embleton, B. J. J. (1987). Statistical analysis of spherical data. Cambridge: University Press.CrossRefGoogle Scholar
  22. Frehner, M., & Brandli, M. (2006). Virtual database: spatial analysis in a web-based data management system for distributed ecological data. Environmental Modelling and Software, 21(11), 1544–1554.CrossRefGoogle Scholar
  23. Gastescu, P., & Stiuca, R. (2008). Delta Dunarii: rezervatie a biosferei. Bucharest: CD Press in Romanian.Google Scholar
  24. Ginzburg, A. I., Kostianoy, A. G., & Sheremet, N. A. (2004). Seasonal and interannual variability of the Black Sea surface temperature as revealed from satellite data (1982–2000). Journal of Marine Systems, 52(1–4), 33–50.CrossRefGoogle Scholar
  25. Hassan, R., Scholes, R., & Ash, N. (2005). Ecosystems and human well-being: current state and trends, volume 1. Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment. Washington, DC: Island Press.Google Scholar
  26. Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., & Pugh, J. (2013). New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 29(3), 493–504.CrossRefGoogle Scholar
  27. Huang, J., Wu, B., Xu, W., Zhou, Y., Tian, Y., & Huang, W. (2004). WebGIS for monitoring soil erosion in Miyun reservoir area. In: Proceedings of the International Geoscience and Remote Sensing Symposium, 2004 (pp. 4843–4845), IEEE.Google Scholar
  28. International Commission for the Protection of the Danube River (ICPDR) (2009). Danube River Basin District management plan. Vienna: ICPDR.Google Scholar
  29. IUCN (1992). East European programme. Environmental status reports, Volume Four. Conservation status of the Danube Delta. Cambridge: IUCN Publications Unit.Google Scholar
  30. Iordache, S., Dunea, D., Lungu, E., Predescu, L. & Dumitru, D. (2015). A cyberinfrastructure for air quality monitoring and early warnings to protect children with respiratory disorders. In: I. Dumitrache, A.M. Florea, F. Pop, A. Dumitrascu (Eds.), Proceedings of the 2015 20th International Conference on Control Systems and Computer Science, (pp. 789–796), IEEE.Google Scholar
  31. Ivanov, A. Y., & Zatyagalova, V. V. (2008). A GIS approach to mapping oil spills in a marine environment. International Journal of Remote Sensing, 29(21), 6297–6313.CrossRefGoogle Scholar
  32. Korotaev, G. K., Saenko, O. A., & Koblinsky, C. J. (2001). Satellite altimetry observations of the Black Sea level. Journal of Geophysical Research C: Oceans, 106(C1), 917–933.CrossRefGoogle Scholar
  33. Lee, H. I. I., Reusser, D. A., Olden, J. D., Smith, S. S., Graham, J., Burkett, V., Dukes, J. S., Piorkowski, R. J., & McPhedran, J. (2008). Integrated monitoring and information systems for managing aquatic invasive species in a changing climate. Conservation Biology, 22(3), 575–584.CrossRefGoogle Scholar
  34. Lovett, G. M., Burns, D. A., Driscoll, C. T., Jenkins, J. C., Mitchell, M. J., Rustad, L., Shanley, J. B., Likens, G. E., & Haeuber, R. (2007). Who needs environmental monitoring? Frontiers in Ecology and the Environment, 5(5), 253–260.CrossRefGoogle Scholar
  35. Mathiyalagan, V., Grunwald, S., Reddy, K. R., & Bloom, S. A. (2005). A WebGIS and geodatabase for Florida’s wetlands. Computers and Electronics in Agriculture, 47(1), 69–75.CrossRefGoogle Scholar
  36. Moses, W. J., Gitelson, A. A., Berdnikov, S., Saprygin, V., & Povazhnyi, V. (2012). Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—the Azov Sea case study. Remote Sensing of Environment, 121, 118–124.CrossRefGoogle Scholar
  37. NCRM (2001). Management study of mussel growing zones in Thessaloniki and Thermaikos bays. Athens: National Center for Marine Research, Institute of Oceanography.Google Scholar
  38. Nikolaidis, G., Koukaras, K., Aligizaki, K., Heracleous, A., Kalopesa, E., Moschandreou, K., Tsolaki, Ε., & Mantoudis, Α. (2005). Harmful microalgal episodes in Greek coastal waters. Journal of Biological Research, 3, 77–85.Google Scholar
  39. Nikolenko, A. V., & Reshetnikov, V. I. (1991). Investigation of long-term changes of the freshwater balance in the Black Sea. Vodnie resursi, 1, 20–28 in Russian.Google Scholar
  40. Parr, T., Ferretti, M., Simpson, I., Forsius, M., & Kovacs-Lang, E. (2002). Towards a long-term integrated monitoring programme in Europe: network design in theory and practice. Environmental Monitoring and Assessment, 78(3), 253–290.CrossRefGoogle Scholar
  41. Permanent Service for Mean Sea Level (PSMSL) (2012). Tide Gauge Data. http://www.psmsl.org/data/obtaining/. Accessed 09 May 2012.
  42. Ramsar Convention Secretariat (2013). The Ramsar convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971) (6th ed.). Gland, Switzerland: Ramsar Convention Secretariat.Google Scholar
  43. Savvaidis, P., Tziavos, I.N., Grigoriadis, V.N., Vergos, G.S., Papadopoulou, I.D., & Stergioudis, A. (2012). A WebGIS-based monitoring and decision support tool for the environmental protection and preservation of the Black Sea: the ECO-Satellite project. In: e-Proceedings of the conference Modern technologies, education and professional practice in geodesy and related fields, 20th International Symposium, 08–09 November, Sofia, 2012.Google Scholar
  44. Topouzelis, K., Tarchi, D., Vespe, M., Posada, M., Muellenhoff, O., & Ferraro, G. (2015). Detection, Tracking, and Remote Sensing: Satellites and Image Processing (Spaceborne Oil Spill Detection). In: Fingas, M. (Ed.), Handbook of Oil Spill Science and Technology (pp. 357–384). Wiley.Google Scholar
  45. Tudor, I. M., Tudor, M., Ibram, O., Alexandrov, B., & Racovet, N. (2014). The evolution of zooplankton community structure in Danube delta region. Journal of Environmental Protection and Ecology, 15(2), 506–516.Google Scholar
  46. Tuncer, G., Karakas, T., Balkas, T. I., Gokcay, C. F., Aygnn, S., Yurteri, C., & Tuncel, G. (1998). Land-based sources of pollution along the Black Sea coast of Turkey: concentrations and annual loads to the Black Sea. Marine Pollution Bulletin, 36(6), 409–423.CrossRefGoogle Scholar
  47. Tziavos, I.N., et al. (2013). Development of a WebGIS-based monitoring and environmental protection and preservation system for the Black Sea: the ECO-Satellite project. Presented at the 2013 EGU General Assembly, Session OS2.2 Advances in understanding of the multi-disciplinary dynamics of the Southern European Seas (Mediterranean and Black Sea), April 7th–12th, Vienna, Austria.Google Scholar
  48. Velikova, V., Cociasu, A., Popa, L., Boicenco, L., & Petrova, D. (2005). Phytoplankton community and hydrochemical characteristics of the Western Black Sea. Water Science and Technology, 9–18.Google Scholar
  49. White, D. L., Wolf, D., Porter, D. E., Sanger, D. M., Riekerk, G. H., DiDonato, G., Holland, A. F., & Dabney, D. (2009). Development of a data management framework in support of southeastern tidal creek research. Environmental Monitoring and Assessment, 150(1–4), 323–331.CrossRefGoogle Scholar
  50. Zalidis, G. C., Mantzavelas, A. L., & Gourvelou, E. (1997). Environmental impacts on Greek wetlands. Wetlands, 17, 339–345.CrossRefGoogle Scholar
  51. Zhang, G., Chen, L., & Dong, Z. (2011). Real-time warning system of regional landslides supported by WEBGIS and its application in Zhejiang province. China. Procedia Earth and Planetary Science, 2, 247–254.CrossRefGoogle Scholar
  52. Zhmud, M. Y. (1999). The present-day conditions of the wetlands in the Ukrainian Danube Delta. In H. J. Nijland (Ed.), Dealing with nature in deltas (pp. 143–156). Lelystad: Institute for Inland Water Management and Wastewater Treatment RIZA.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ilias N. Tziavos
    • 1
  • Thomas K. Alexandridis
    • 2
  • Borys Aleksandrov
    • 3
  • Agamemnon Andrianopoulos
    • 2
    • 4
  • Ioannis D. Doukas
    • 5
  • Ion Grigoras
    • 6
  • Vassilios N. Grigoriadis
    • 1
  • Ioanna D. Papadopoulou
    • 5
  • Paraskevas Savvaidis
    • 5
  • Argyrios Stergioudis
    • 5
  • Liliana Teodorof
    • 6
  • Georgios S. Vergos
    • 1
  • Lyudmila Vorobyova
    • 3
  • Georgios C. Zalidis
    • 2
    • 4
  1. 1.Department of Geodesy and Surveying, School of Rural and Surveying EngineeringAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
  2. 2.Laboratory of Remote Sensing and GIS, Faculty of AgricultureAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
  3. 3.Odessa Branch Institute of Biology of Southern Seas (OBIBSS)National Academy of Sciences of UkraineOdessaUkraine
  4. 4.Balkan Environment Center (BEC)Central MacedoniaGreece
  5. 5.Laboratory of Geodesy and Geomatics, Department of Civil EngineeringAristotle University of Thessaloniki (AUTh)ThessalonikiGreece
  6. 6.Danube Delta National Institute for Research and Development (DDNI)TulceaRomania

Personalised recommendations