Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline

  • R. Ahumada-Rudolph
  • V. Novoa
  • K. Sáez
  • M. Martínez
  • A. Rudolph
  • C. Torres-Diaz
  • J. Becerra


Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry.


Antibiotics Aquaculture Degradation Marine fungi Incorporated and restoration 



We thank financial support of the “CONICYT + PAI (Comisión nacional de Investigación Científica y Tecnológica + Programa de Atracción e Inserción) Concurso Nacional Tesis de Doctorado en la Industria, Convocatoria 2013 + Folio 783110001” and the project partner Blumar Salmones S.A and Project FONDECYT 1151028. Special thanks to Sr. Nicos Nicolaides for his help in presenting the project.


  1. Ahumada-Rudolph, R., Cajas-Madriaga, D., Rudolph, A., Reinoso, R., Torres, C., Silva, M., & Becerra, J. (2014). Variation of sterols and fatty acids as an adaptive response to changes in temperature, salinity and pH of a marine fungus Epicoccum nigrum isolated from the Patagonian fjords. Revista de Biología Marina y Oceanografía, 49, 293–305.CrossRefGoogle Scholar
  2. Andrade, V. da C., Zampieri, B. del B., Ballesteros, E. R., Pinto A. B., de Oliveira, A. J. (2015) Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands. Environmental Monitoring and Assessment, 187:342 doi:  10.1007/s10661-015-4573-8.
  3. Alcock, R. E., Sweetman, A., & Jones, K. C. (1999). Assessment of organic contaminant fate in wastewater treatment plants I. Selected compounds and physiochemical properties. Chemosphere, 38, 2247–2262.CrossRefGoogle Scholar
  4. Baćmaga, M., Kucharski, J., & Wyszkowska, J. (2015). Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environmental Monitoring and Assessment. doi: 10.1007/s10661-015-4827-5.Google Scholar
  5. Bannister, R. J., Valdemarsen, T., Hansen, P. K., Holmer, M., & Ervik, A. (2014). Changes in benthic sediment conditions under an Atlantic salmon farm at a deep, well-flushed coastal site. Aquaculture Environment Interactions, 5, 29–47.CrossRefGoogle Scholar
  6. Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78–91.CrossRefGoogle Scholar
  7. Bugni, T. S., & Ireland, C. M. (2004). Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Natural Product Reports, 21, 143–163.CrossRefGoogle Scholar
  8. Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture, 306, 7–23.CrossRefGoogle Scholar
  9. Buschmann, A. H., Riquelme, V. A., Hernández-González, M. C., Varela, D., Jiménez, J. E., Henríquez, L. A., Vergara, P. A., Guíñez, R., & Filún, L. (2006). A review of the impacts of salmon farming on marine coastal ecosystems in the Southeast Pacific. ICES Journal of Marine Science, 63, 1338–1345.CrossRefGoogle Scholar
  10. Buschmann, A. H., Tomova, A., López, A., Maldonado, M. A., & Henríquez, L. A. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. PloS One, 7, e42724. doi: 10.1371/journal.pone.0042724. CrossRefGoogle Scholar
  11. Buschmann, A. H. & Muñoz J. L. P. 2016. Salmon faring. Reference module in Earth systems and environmental sciences. Amsterdam, Elsevier. doi: 10.1016/B978–0–12-409548-9.09580-4.Google Scholar
  12. Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15, 1917–1942.CrossRefGoogle Scholar
  13. Cabello, F. C. (2004). Antibióticos y acuicultura en Chile: consecuencias para la salud humana y animal. Revista Médica Chile, 132, 1001–1006.CrossRefGoogle Scholar
  14. Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8, 1137–1144.CrossRefGoogle Scholar
  15. Chen, G., Fan, J., Liu, R., Zeng, G., Chen, A., & Zou, Z. (2012). Removal of Cd(II), Cu(II) and Zn(II) from aqueous solutions by live Phanerochaete chrysosporium. Environmental Technology, 33, 2653–2659.CrossRefGoogle Scholar
  16. Costa-Pierce, B. A. (2010). Sustainable ecological aquaculture systems: the need for a new social contract for aquaculture development. Marine Technology Society, 44, 88–112.CrossRefGoogle Scholar
  17. Coyne, R., Smith, P., & Moriarty, C. (2001). The fate of oxytetracycline in the marine environment of a salmon cage farm. Marine Environment and Health Series, 3, 1–24.Google Scholar
  18. Drummond, A. J., Ashton, B., Burton, S., Cheung, M., Cooper, A., Heled, J., Moir, R., Stones-Havas, S., Sturrock, S., & Thierer, T. (2011) Geneious v5.4. Biomatters, Auckland. Accessed 30 Oct 2015
  19. Fester, T. (2012). Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microbial Biotechnology, 6, 80–84.CrossRefGoogle Scholar
  20. Fortt, Z. A., Cabello, F., & Buschmann, A. (2007). Residuos de tetraciclina y quinolonas en peces silvestres en una zona costera donde se desarrolla la acuicultura del salmón en Chile. Revista Chilena de Infectología, 24, 14–18.CrossRefGoogle Scholar
  21. Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111, 3–49.CrossRefGoogle Scholar
  22. Guzmán-Dávalos, L., & Álvarez-Barajas, I. (2014). Hongos y líquenes como bioindicadores y micorremediacion. In C. A. González, A. Vallarino, J. C. Pérez, & A. M. Low (Eds.), Bioindicadores: guardianes de nuestro futuro ambiental (pp. 579–603). México: El Colegio de la Frontera Sur e Instituto Nacional de Ecología y Cambio Climático.Google Scholar
  23. Halling-Sørensen, B. (2001). Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology, 40, 451–460.CrossRefGoogle Scholar
  24. Hargrave, B. T., Holmer, M., & Newcombe, C. P. (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin, 56:810–824Google Scholar
  25. Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9, 177–191.CrossRefGoogle Scholar
  26. Hektoen, H., Berge, J. A., Hormazábal, V., & Yndestad, M. (1995). Persistence of antibacterial agents in marine sediments. Aquaculture, 133, 175–184.CrossRefGoogle Scholar
  27. Heuer, O. E., Kruse, H., Grave, K., Collignon, P., & Karunasagar, I. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49, 1248–1253.CrossRefGoogle Scholar
  28. Holmer, M. (2010). Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquaculture Environment Interactions, 1, 57–70.CrossRefGoogle Scholar
  29. Instituto Nacional de Estadísticas (INE). 2014. Compendio estadístico 2014. Accessed 27 Dec 2015.
  30. Keeley, N. B., Cromey, C. J., Goodwin, E. O., Gibbs, M. T., & Macleod, C. M. (2013). Predictive depositional modelling (DEPO-MOD) of the interactive effect of current flow and resuspension on ecological impacts beneath salmon farms. Aquaculture Environment Interactions, 3, 275–291.CrossRefGoogle Scholar
  31. Krause, E., Wichels, A., Giménez, L., & Gerdts, G. (2013). Marine fungi may benefit from ocean acidification. Aquatic Microbial Ecology, 69, 59–67.CrossRefGoogle Scholar
  32. Kutti, T., Hansen, K. P., Ervik, A., Høisæter, T., & Johannessen, P. (2007). Effects of organic effluents from a salmon farm on a fjord system. II. Temporal and spatial patterns in infauna community composition. Aquaculture, 262, 355–366.CrossRefGoogle Scholar
  33. Kümmerer, K. (2009). Antibiotics in the aquatic—a review—part I. Chemosphere, 75, 417–434.CrossRefGoogle Scholar
  34. Manohar, C. S., & Raghukumar, C. (2013). Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiology Letters, 341, 69–78.CrossRefGoogle Scholar
  35. Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 24, 718–733.CrossRefGoogle Scholar
  36. Millanao, B. A., Barrientos, H. M., Gomez, C. C., Tomova, A., & Buschmann, A. (2011). Uso inadecuado y excesivo de antibióticos: salud pública y salmonicultura en Chile. Revista Médica Chile, 139, 107–118.CrossRefGoogle Scholar
  37. Miranda, C., & Zemelman, R. (2002). Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture, 212, 31–47.CrossRefGoogle Scholar
  38. Nnenna, F. P., Lekiah, P., & Obemeata, O. (2011). Degradation of antibiotics by bacteria and fungi from the aquatic environment. Toxicology and Environmental Health Sciences, 3, 275–285.Google Scholar
  39. Rhodes, G., Huys, G., Swings, J., McGann, P., & Hiney, M. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. Applied and Environmental Microbiology, 66, 3883–3890.CrossRefGoogle Scholar
  40. Rudolph, A., Medina, P., Urrutia, C., & Ahumada, R. (2009). Ecotoxicological sediment evaluations in marine aquaculture areas of Chile. Environmental Monitoring and Assessment, 155, 419–429.CrossRefGoogle Scholar
  41. Rudolph, A., Medina, P., Ahumada, R., & Novoa, V. (2011). Ecotoxicological quality of sediments in fiords in Southern Chile (44–46.5° LS). Revista de Biología Marina y Oceanografía, 46, 79–84.CrossRefGoogle Scholar
  42. Samuelsen, O. B. (1989). Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture, 83, 7–16.CrossRefGoogle Scholar
  43. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759.CrossRefGoogle Scholar
  44. Schmitt, H., Haapakangas, H., & Van Beelen, P. (2005). Effects of antibiotics on soil microorganisms; time and nutrients influence pollution-induced community tolerance. Soil Biology and Biochemistry, 37, 1882–1892.CrossRefGoogle Scholar
  45. Servicio Nacional de Pesca y Acuicultura (SERNAPESCA) (2014) Informe sobre uso de antimicrobianos en la salmonicultura nacional 2013. Unidad de salud animal. Ministerio de Economía, Fomento y Turismo. Valparaíso, Chile. 19 pp.Google Scholar
  46. Silva, N., & Guzmán, D. (2006). Condiciones oceanográficas físicas y químicas, entre boca del Guafo y fiordo Aysén (Crucero Cimar 7 Fiordos). Ciencia Tecnología del Mar, 29, 25–44.Google Scholar
  47. Sowmya, H. V., Ramalingappa, B., Nayanashree, G., Thippeswamy, B., & Krishnappa, M. (2014). Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environmental Monitoring and Assessment, 186(10), 6577–6586.CrossRefGoogle Scholar
  48. Sørum, H. (2006). Antimicrobial drug resistance in fish pathogens. In F. M. Aarestrup (Ed.), Antimicrobial resistance in bacteria of animal origin (pp. 213–238). Washington: ASM Press.Google Scholar
  49. Subsecretaría de Pesca y Acuicultura (SUBPESCA) (2014) Informe sectorial de pesca y acuicultura. Valparaíso, Chile p 19.Google Scholar
  50. Subsecretaría de Pesca y Acuicultura (SUBPESCA) (2015) Subsecretaría de Pesca y Acuicultura. Valparaíso, Chile Accessed 27 Dec 2015.
  51. Tedersoo, L., Suvi, T., Jairus, T., & Kõljalg, H. (2009). Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environmental Microbiology, 10, 1189–1201.CrossRefGoogle Scholar
  52. Valdemarsen, T., Kristensen, E., & Holmer, M. (2009). Metabolic threshold and sulfide-buffering in diffusion controlled marine sediments impacted by continuous organic enrichment. Biogeochemistry, 95, 335–353.CrossRefGoogle Scholar
  53. Vidaver, A. (2002). Uses of antimicrobials in plant agriculture. Clinical Infectious Diseases, 34, 107–110.CrossRefGoogle Scholar
  54. Williams, A. J., Deck, J., Freeman, J. P., Chiarelli, M. P., Adjej, M. D., Heinze, T. M., & Sutherland, J. D. (2007). Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere, 67, 240–243.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • R. Ahumada-Rudolph
    • 1
    • 2
    • 3
  • V. Novoa
    • 1
    • 2
  • K. Sáez
    • 4
  • M. Martínez
    • 5
  • A. Rudolph
    • 6
  • C. Torres-Diaz
    • 7
  • J. Becerra
    • 3
  1. 1.Departamento de Geografía, Facultad de Arquitectura, Urbanismo y GeografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Estudiantes de Doctorado en Ciencias Ambientales, Facultad de Ciencias AmbientalesUniversidad de ConcepciónConcepciónChile
  3. 3.Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  4. 4.Departamento de Estadística, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile
  5. 5.Laboratorio de Microbiología Básica y Bioremediación, Facultad de Ciencias BiológicasUniversidad de ConcepciónConcepciónChile
  6. 6.Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile
  7. 7.Laboratorio de Genómica & Biodiversidad (LGB), Departamento de Ciencias NaturalesUniversidad del Bío-BíoChillánChile

Personalised recommendations