Advertisement

Impact of climate change on crop yield and role of model for achieving food security

  • Manoj Kumar
Article

Abstract

In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of agricultural productivity to sustain food security for generations is essential to maintain a collective knowledge and resources for preventing negative impact as well as managing crop practises.

Keywords

Adaption Climate change Crop model Food policies Food security Temperature 

Notes

Acknowledgments

The author is thankful to the Director, CSIR-IHBT, Palampur, for the facilities and support. MK is thankful to the Council for Scientific and Industrial Research, New Delhi and Science and Engineering Research Board (SERB), New Delhi for providing financial support. The author acknowledges Dr. S.K. Vats for his valuable suggestions. The manuscript bears IHBT communication number 3749.

References

  1. Aggarwal, P. K. (2008). Global climate change and Indian agriculture: impacts, adaptation and mitigation. Indian Journal of Agricultural Sciences, 78(11), 911–919.Google Scholar
  2. Ahmad, S., Ahmad, A., Soler, C. M. T., Ali, H., Zia-Ul-Haq, M., Anothai, J., et al. (2012). Application of the CSM-CERES-rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precision Agriculture, 132(2), 200–218.CrossRefGoogle Scholar
  3. Ainsworth, E. A. (2008). Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology, 14(7), 1642–1650.CrossRefGoogle Scholar
  4. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372.CrossRefGoogle Scholar
  5. Ainsworth, E.A., & Mcgrath, J.M. (2010). Direct effects of rising atmospheric carbon dioxide and ozone on crop yields. In: Climate Change and Food Security (pp. 109–130). Springer Netherlands.Google Scholar
  6. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30(3), 258–270.CrossRefGoogle Scholar
  7. Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., et al. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8(8), 695–709.CrossRefGoogle Scholar
  8. Alig, R. J., Adams, D. M., & McCarl, B. A. (2002). Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets. Forest Ecology and Management, 169(1), 3–14.CrossRefGoogle Scholar
  9. Allison, I., Bindoff, N.L., Bindschadler, R. A, Cox, P.M., de Noblet, N., England M.H., et al. (2009). The Copenhagen Diagnosis, 2009: Updating the World on the Latest Climate Science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia.Google Scholar
  10. Alston, J. M., Beddow, J. M., & Pardey, P. G. (2009). Agricultural research, productivity, and food prices in the long run. Science, 325(5945), 1209–1210.CrossRefGoogle Scholar
  11. Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012.CrossRefGoogle Scholar
  12. Atzberger, C. (2013). Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sensing, 5(2), 949–981.CrossRefGoogle Scholar
  13. Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones, J. W., et al. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20(7), 2301–2320.CrossRefGoogle Scholar
  14. Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323(5911), 240–244.CrossRefGoogle Scholar
  15. Betts, R. A., Boucher, O., Collins, M., Cox, P. M., Falloon, P. D., Gedney, N., et al. (2007). Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 448(7157), 1037–1041.CrossRefGoogle Scholar
  16. Bisht, P., Kumar, P., Yadav, M., Rawat, J. S., Sharma, M. P., & Hooda, R. S. (2014). Spatial dynamics for relative contribution of cropping pattern analysis on environment by integrating remote sensing and GIS. International Journal of Plant Production, 8(1), 1735–8043.Google Scholar
  17. Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.CrossRefGoogle Scholar
  18. Bowes, G. (1991). Growth at elevated CO2: photosynthetic responses mediated through rubisco. Plant, Cell and Environment, 14(8), 795–806.CrossRefGoogle Scholar
  19. Brown, M. E., & Funk, C. C. (2008). Food security under climate change. Science, 319, 580–581.CrossRefGoogle Scholar
  20. Burney, J., Woltering, L., Burke, M., Naylor, R., & Pasternak, D. (2010). Solar-powered drip irrigation enhances food security in the Sudano-Sahel. Proceedings of the National Academy of Sciences, 107(5), 1848–1853.CrossRefGoogle Scholar
  21. Cantero-Martínez, C., Angás, P., & Lampurlanés, J. (2007). Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Annals of Applied Biology, 150(3), 293–305.CrossRefGoogle Scholar
  22. Cao, L., Bala, G., Caldeira, K., Nemani, R., & Ban-Weiss, G. (2010). Importance of carbon dioxide physiological forcing to future climate change. Proceedings of the National Academy of Sciences, 107(21), 9513–9518.CrossRefGoogle Scholar
  23. Challinor, A. J., Wheeler, T. R., Craufurd, P. Q., Slingo, J. M., & Grimes, D. I. F. (2004). Design and optimisation of a large-area process-based model for annual crops. Agricultural and Forest Meteorology, 124(1), 99–120.CrossRefGoogle Scholar
  24. Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., & Franser, E. (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of Experimental Botany, 60(10), 2775–2789.CrossRefGoogle Scholar
  25. Chapman, S. C., Cooper, M., Podlich, D., & Hammer, G. L. (2003). Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agronomy Journal, 95(1), 99–113.CrossRefGoogle Scholar
  26. Conley, M. M., Kimball, B. A., Brooks, T. J., Pinter Jr., P. J., Hunsaker, D. J., Wall, G. W., et al. (2001). CO2 enrichment increases water-use efficiency in sorghum. New Phytologist, 151(2), 407–412.CrossRefGoogle Scholar
  27. Conway, T.J., & Tans, P.P. (2012). Trends in atmospheric carbon dioxide. http:// www.esrl.noaa.gov/gmd/ccgg/trends.
  28. Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491–496.Google Scholar
  29. Dai, A. (2011). Drought under global warming: a review. WIREs Climate Change, 2(1), 45–65.CrossRefGoogle Scholar
  30. de Fraiture, C., David, M., & Dennis, W. (2010). Investing in water for food, ecosystems, and livelihoods: an overview of the comprehensive assessment of water management in agriculture. Agricultural Water Management, 97(4), 495–501.CrossRefGoogle Scholar
  31. Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9(3), 034011.CrossRefGoogle Scholar
  32. Dev, S.M., Sharma, A.N. (2010). Food security in India: performance, challenges and polices. Oxfam India working papers series. http://www.oxfamindia.org/sites/default/files/VII.%20Food%20Security%20in%20India-Performance%20Challenges%20and%20Policies.pdf.
  33. Döll, P. (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Climatic change, 54, 269–293.Google Scholar
  34. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., et al. (1997). Maximum and minimum temperature trends for the globe. Science, 277(5324), 364–367.CrossRefGoogle Scholar
  35. Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., et al. (2013). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. The Journal of Agricultural Science, 151(6), 813–835.CrossRefGoogle Scholar
  36. FAO (2009). The state of food insecurity in the world. Rome: FAO.Google Scholar
  37. Fereres, E., Orgaz, F., & Gonzalez-Dugo, V. (2011). Reflections on food security under water scarcity. Journal of Experimental Botany, 62, 4079–4086.CrossRefGoogle Scholar
  38. Finger, R., Hediger, W., & Schmid, S. (2011). Irrigation as adaptation strategy to climate change–a biophysical and economic appraisal for Swiss maize production. Climatic Change, 105(3–4), 509–528.CrossRefGoogle Scholar
  39. Fischer, R. A., & Edmeades, G. O. (2010). Breeding and cereal yield progress. Crop Science, 50(Supplement 1), S-85–S-98.CrossRefGoogle Scholar
  40. Fischer, G., Shah, M., Tubiello, F., & van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society, B: Biological Sciences, 360(1463), 2067–2083.CrossRefGoogle Scholar
  41. Fischer, G., Tubiello, F. N., Van Velthuizen, H., & Wiberg, D. A. (2007). Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technological Forecasting and Social Change, 74(7), 1083–1107.Google Scholar
  42. Fiscus, E. L., Reid, C. D., Miller, J. E., & Heagle, J. E. (1997). Elevated CO2 reduces O3 flux and O3 induced yield losses in Soyabean: possible implications for elevated CO2 studies. Journal of Experimental Botany, 48(2), 307–313.CrossRefGoogle Scholar
  43. Gan, J. (2004). Risk and damage of southern pine beetle outbreaks under global climate change. Forest Ecology and Management, 191(1), 61–71.CrossRefGoogle Scholar
  44. Giordano, M., de Fraiture C., Weight E., & van der Bliek J. (2012). Water for wealth and food security. Supporting farmer-driven investments in agricultural water management. Synthesis Report of the AgWater Solutions Project. International Water Management Institute, Colombo, Sri Lanka.Google Scholar
  45. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.CrossRefGoogle Scholar
  46. Goklany, I. M. (2007). Integrated strategies to reduce vulnerability and advance adaptation, mitigation, and sustainable development. Mitigation and Adaptation Strategies for Global Change, 12(5), 755–778.CrossRefGoogle Scholar
  47. Gordon, L. J., Finlayson, C. M., & Falkenmark, M. (2010). Managing water in agriculture for food production and other ecosystem services. Agricultural Water Management, 97(4), 512–519.CrossRefGoogle Scholar
  48. Gornall, J., Betts, R., Burke, E., Clarr, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365(1554), 2973–2989.CrossRefGoogle Scholar
  49. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60(10), 2827–2838.CrossRefGoogle Scholar
  50. Gupta, R., Gopal, R., Jat, M. L., Jat, R. K., Sidhu, H. S., Minhas, P. S., & Malik, R. K. (2010). Wheat productivity in indo-Gangetic plains of India during 2010: terminal heat effects and mitigation strategies. PACA Newsletter, 14, 1–11.Google Scholar
  51. Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., et al. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 111(9), 3251–3256.CrossRefGoogle Scholar
  52. Hagemann, S., Chen, C., Clark, D. B., Folwell, S., Gosling, S. N., Haddeland, I., et al. (2013). Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamics, 4, 129–144.CrossRefGoogle Scholar
  53. Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., et al. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the US Corn Belt? Crop Science, 49(1), 299–312.CrossRefGoogle Scholar
  54. Haris, A. V. A., Biswas, S., Chhabra, V., Elanchezhian, R., & Bhatt, B. P. (2013). Impact of climate change on wheat and winter maize over a sub-humid climatic environment. Current Science, 104(2), 206–214.Google Scholar
  55. Hawkins, E., Fricker, T. E., Challinor, A. J., Ferro, C. A., Ho, C. K., & Osborne, T. M. (2013). Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Global Change Biology, 19(3), 937–947.CrossRefGoogle Scholar
  56. Hlavinka, P., Trnka, M., Semeradova, D., Dubrovsky, M., Zalud, Z., & Mozny, M. (2009). Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology, 149(3), 431–442.CrossRefGoogle Scholar
  57. Högy, P., Wieser, H., Köhler, P., Schwadorf, K., Breuer, J. Franzaring, J., Muntifering, R., & Fangmeier, A. (2009). Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biology, 11(s1), 60–69.Google Scholar
  58. Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691–19696.CrossRefGoogle Scholar
  59. Hui, J., Erda, L., Wheeler, T., Challinor, A., & Shuai, J. (2013). Climate change modelling and its roles to Chinese crops yield. Journal of Integrative Agriculture, 12(5), 892–902.CrossRefGoogle Scholar
  60. Hunsaker, D. J., Hendrey, G. R., Kimball, B. A., Lewin, K. F., Mauney, J. R., & Nagy, J. (1994). Cotton evapotranspiration under field conditions with CO2 enrichment and variable soil-moisture regimes. Agricultural and Forest Meteorology, 70(1–4), 247–258.CrossRefGoogle Scholar
  61. Hunsaker, D. J., Kimball, B. A., Pinter, P. J., LaMorte, R. L., & Wall, G. W. (1996). Carbon dioxide enrichment and irrigation effects on wheat evapotranspiration and water use efficiency. Transactions of ASAE, 39(4), 1345–1355.CrossRefGoogle Scholar
  62. Huntington, T. G. (2010). Climate warming-induced intensification of the hydrologic cycle: an assessment of the published record and potential impacts on agriculture. Advances in Agronomy, 109, 1–53.CrossRefGoogle Scholar
  63. Immerzeel, W. W., van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328, 1382–1385.Google Scholar
  64. IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability, Contribution of Working Group II (AR4). Cambridge: Cambridge University Press.Google Scholar
  65. Jury, W. A., & Vaux, J. H. (2005). The role of science in solving the world’s emerging water problems. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15715–15720.CrossRefGoogle Scholar
  66. Kimball, B. A., Kobayashi, K., & Bindi, M. (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77, 293–368.CrossRefGoogle Scholar
  67. Kirda, C., Topcu, S., Cetin, M., Dasgan, H. Y., Kaman, H., Topaloglu, F., et al. (2007). Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Annals of Applied Biology, 150(3), 281–291.CrossRefGoogle Scholar
  68. Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7(3), 034032.CrossRefGoogle Scholar
  69. Kouadio, L., Newlands, N. K., Davidson, A., Zhang, Y., & Chipanshi, A. (2014). Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. Remote Sensing, 6(10), 10193–10214.CrossRefGoogle Scholar
  70. Kristensen, K., Schelde, K., & Olesen, J. E. (2011). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, 149(1), 33–47.CrossRefGoogle Scholar
  71. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.CrossRefGoogle Scholar
  72. Le Quere, C. (2009). Closing the global budget for CO2. Global Change, 74, 28–31.Google Scholar
  73. Leakey, A. D. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 276I(1666), 2333–2343.CrossRefGoogle Scholar
  74. Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., & Long, S. P. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 140(2), 779–790.CrossRefGoogle Scholar
  75. Leakey, A. D., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 60(10), 2859–2876.CrossRefGoogle Scholar
  76. Lobell, D. B., & Burke, M. B. (2008). Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters, 3(3), 034007.CrossRefGoogle Scholar
  77. Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 014002.CrossRefGoogle Scholar
  78. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610.CrossRefGoogle Scholar
  79. Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011a). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42–45.CrossRefGoogle Scholar
  80. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011b). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.CrossRefGoogle Scholar
  81. Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2(3), 186–189.CrossRefGoogle Scholar
  82. Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology, 55, 591–628.CrossRefGoogle Scholar
  83. Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J., & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312(5782), 1918–1921.CrossRefGoogle Scholar
  84. Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., et al. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453(7193), 379–382.CrossRefGoogle Scholar
  85. Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., et al. (2009). Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256–1260.CrossRefGoogle Scholar
  86. Matthews, R., & Wassmann, R. (2003). Modelling the impacts of climate change and methane emission reductions on rice production: a review. European Journal of Agronomy, 19(4), 573–598.CrossRefGoogle Scholar
  87. Matthews, R. B., Kropff, M. J., & Bachelet, D. (1995). In R. B. Matthews, M. J. Kropff, D. Bachelet, & H. H. van Laar (Eds.), Modelling the Impact of Climate Change on Rice Production in Asia (pp. 3–9). Philippines: CAB International and International Rice Research Institute.Google Scholar
  88. Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C., & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: the role of crop modelling. Global Food Security, 2(1), 24–28.CrossRefGoogle Scholar
  89. McGrath, J. M., & Lobell, D. B. (2013). Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant, Cell & Environment, 36(3), 697–705.CrossRefGoogle Scholar
  90. Mearns, L. O., Mavromatis, T., Tsvetsinskaya, E., Hays, C., & Easterling, W. (1999). Comparative responses of EPIC and CERES crop models to high and low spatial resolution climate change scenarios. Journal of Geophysical Research-Atmospheres, 104(D6), 6623–6646.CrossRefGoogle Scholar
  91. Mertz, O., Mbow, C., Nielsen, J. Ø., Maiga, A., Diallo, D., Reenberg, A., et al. (2010). Climate factors play a limited role for past adaptation strategies in West Africa. Ecology and Society, 15(4), 25–39.Google Scholar
  92. Mishra, A. K., & Agrawal, S. B. (2014). Cultivar specific response of CO2 fertilization on two tropical mung bean (Vigna radiata L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. Journal of Agronomy and Crop Science, 200(4), 273–289.CrossRefGoogle Scholar
  93. Molden, D. (2007). Comprehensive assessment of water management in agriculture. Water for food, water for life: a comprehensive assessment of water management in agriculture. London: Earth scan, and Colombo: International Water Management Institute. http://www.earthscan.co.uk.
  94. Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., et al. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139–142.CrossRefGoogle Scholar
  95. Nowak, R. S., Ellsworth, E. S., & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2: do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162(2), 253–280.CrossRefGoogle Scholar
  96. Ort, D. R., Ainsworth, E. A., Aldea, M., Allen, D. J., Bernacchi, C. J., Berenbaum, M. R., et al. (2006). SoyFACE: the effects and interactions of elevated [CO2] and [O3] on soybean. In J. Sberger, S. P. Long, R. J. Norby, M. Stitt, G. R. Hendry, & H. Blum (Eds.), Managed ecosystems and CO 2 (pp. 71–86). Berlin, Heidelberg: Springer.Google Scholar
  97. Ottman, M. J., Kimball, B. A., Pinter, P. J., Wall, G. W., Vanderlip, R. L., Leavitt, S. W., et al. (2001). Elevated [CO2] increases sorghum biomass under drought conditions. New Phytologist, 150(2), 261–273.CrossRefGoogle Scholar
  98. Pandey, P. C., Mandal, V. P., Katiyar, S., Kumar, P., Tomar, V., Patairiya, S., Ravisankar, N., & Gangwar, B. (2015). Geospatial approach to assess the impact of nutrients on Rice equivalent yield using MODIS sensors’-based MOD13Q1-NDVI Data. IEEE Sensors Journal, 15(11), 6108–6115.CrossRefGoogle Scholar
  99. Parry, M. A. J., & Lea, P. J. (2009). Food security and drought. Annals of Applied Biology, 155(3), 299–300.CrossRefGoogle Scholar
  100. Parry, M. L., Fischer, C., Livermore, M., Rosenzweig, C., & Iglesias, A. (1999). Climate change and world food security: a new assessment. Global Environmental Change, 9, S51–S67.CrossRefGoogle Scholar
  101. Parry, M., Arnell, N., McMichael, T., Nicholls, R., Martens, P., Kovats, S., et al. (2001). Millions at risk: defining critical climate threats and targets. Global Environmental Change, 11(3), 181–183.CrossRefGoogle Scholar
  102. Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 14(1), 53–67.CrossRefGoogle Scholar
  103. Pearson, P. N., & Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406(6797), 695–699.CrossRefGoogle Scholar
  104. Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971–9975.CrossRefGoogle Scholar
  105. Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B, 360(1463), 2021–2035.CrossRefGoogle Scholar
  106. Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., et al. (2001). The carbon cycle and atmospheric carbon dioxide. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, et al. (Eds.), Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change (pp. 183–237). New York: Cambridge University Press.Google Scholar
  107. Redman, R. S., Kim, Y. O., Woodward, C. J., Greer, C., Espino, L., Doty, S. L., & Rodriguez, R. J. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLOS one, 6(7), e14823.Google Scholar
  108. Rivington, M., & Koo, J. (2011). Report on the meta-analysis of crop modelling for climate change and food security survey. CGIAR Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark. http://r4d.dfid.gov.uk/PDF/Outputs/CCAFS/meta-analysis_of_crop_modelling_for_ccafs.pdf.
  109. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., et al. (2009). A safe operating space for humanity. Nature, 461(7263), 472–475.CrossRefGoogle Scholar
  110. Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., et al. (2013). A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinformatics & Geostatistics: An Overview, 1, 1000101.Google Scholar
  111. Rosenzweig, C., & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367(6459), 133–138.CrossRefGoogle Scholar
  112. Rötter, R. P., Carter, T. R., Olesen, J. E., & Porter, J. R. (2011). Crop–climate models need an overhaul. Nature Climate Change, 1, 175–177.CrossRefGoogle Scholar
  113. Sadras, V. O., & Calviño, P. A. (2001). Quantification of grain yield response to soil depth in soybean, maize, sunflower, and wheat. Agronomy Journal, 93(3), 577–583.CrossRefGoogle Scholar
  114. Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010.CrossRefGoogle Scholar
  115. Schmidhuber, J., & Tubiello F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703–19708.Google Scholar
  116. Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334–1337.CrossRefGoogle Scholar
  117. Sinclair, T. R., & Seligman, N. A. G. (1996). Crop modelling: from infancy to maturity. Agronomy Journal, 88(5), 698–704.CrossRefGoogle Scholar
  118. Soussana, J. F., Graux, A. I., & Tubiello, F. N. (2010). Improving the use of modelling for projections of climate change impacts on crops and pastures. Journal of Experimental Botany, 61(8), 2217–2228.CrossRefGoogle Scholar
  119. Soussana, J. F., Fereres, E., Long, S. P., Mohren, F. G., Pandya-Lorch, R., Peltonen-Sainio, P., et al. (2012). A European science plan to sustainably increase food security under climate change. Global Change Biology, 18(11), 3269–3271.CrossRefGoogle Scholar
  120. Stamoulis, K.G., & Zezza, A. (2003). A conceptual framework for national agricultural, rural development, and food security strategies and policies. Food and Agriculture Organization of the United Nations. Agricultural and Development Economics Division.Google Scholar
  121. Tai, A. P., Martin, M. V., & Heald, C. L. (2014). Threat to future global food security from climate change and ozone air pollution. Nature Climate Change. doi: 10.1038/NCLIMATE2317. Google Scholar
  122. Tang, Q., & Lettenmaier, D. P. (2012). 21st century runoff sensitivities of major global river basins. Geophysical Research Letters, 39(6), L06403.CrossRefGoogle Scholar
  123. Tans, P., & Keeling, R. (2014). Trends in atmospheric CO2 at Mauna Loa, Hawaii (Earth System Research Laboratory, National Oceanic and Atmospheric Administration and Scripps Institution of Oceanography, La Jolla, CA). www.esrl.noaa.gov/gmd/ccgg/trends/.
  124. Tao, F., & Zhang, Z. (2011). Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Climatic Change, 105(3–4), 409–432.CrossRefGoogle Scholar
  125. Tausz-Posch, S., Borowiak, K., Dempsey, R. W., Norton, R. M., Seneweera, S., Fitzgerald, G. J., & Tausz, M. (2013). The effect of elevated CO2 on photochemistry and antioxidative defence capacity in wheat depends on environmental growing conditions—a FACE study. Environmental and Experimental Botany, 88, 81–92.CrossRefGoogle Scholar
  126. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world (Vol. 327, pp. 818–822). Science.Google Scholar
  127. Thayyen, R. J., & Gergan, J. T. (2010). Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment". The Cryosphere, 4(1), 115–128.CrossRefGoogle Scholar
  128. Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology. doi: 10.1111/gcb.12581. Google Scholar
  129. Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264.CrossRefGoogle Scholar
  130. Timmer, C. P. (2012). Behavioral dimensions of food security. Proceedings of the National Academy of Sciences, 109(31), 12315–12320.CrossRefGoogle Scholar
  131. Todorovic, M., Albrizio, R., Zivotic, L., Saab, M. T. A., Stöckle, C., & Steduto, P. (2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101(3), 509–521.Google Scholar
  132. Tomar, V., Mandal, V. P., Srivastava, P., Patairiya, S., Singh, K., Ravisankar, N., Subash, N., & Kumar, P. (2014). Rice equivalent crop yield assessment using MODIS sensors’ based MOD13A1-NDVI data. IEEE Sensors Journal, 14(10), 3599–3605.CrossRefGoogle Scholar
  133. Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S., & Jones, J. W. (2002). Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: wheat, potato, maize, and citrus. Climate Research, 20(3), 259–270.CrossRefGoogle Scholar
  134. Tubiello, F. N., Amthor, J. S., Boote, K. J., Donatelli, M., Easterling, W., Fischer, G., et al. (2007). Crop response to elevated CO2 and world food supply: a comment on “food for thought…” by Long et al., Science 312: 1918–1921, 2006. European Journal of Agronomy, 26(3), 215–223.CrossRefGoogle Scholar
  135. Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A., et al. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144.CrossRefGoogle Scholar
  136. Waha, K., Müller, C., & Rolinski, S. (2013). Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid-to late-21st century. Global and Planetary Change, 106, 1–12.CrossRefGoogle Scholar
  137. Wall, G. W., Brooks, T. J., Adam, N. R., Cousins, A. B., Kimball, B. A., Pinter, P. J., et al. (2001). Elevated atmospheric CO2 improved sorghum plant water status by ameliorating the adverse effects of drought. New Phytologist, 152(2), 231–248.CrossRefGoogle Scholar
  138. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13386–13391.Google Scholar
  139. Wang, J., Wang, E., Luo, Q., & Kirby, M. (2009). Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia. Climatic Change, 96(1–2), 79–96.CrossRefGoogle Scholar
  140. Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., et al. (2009). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101, 59–122.CrossRefGoogle Scholar
  141. Webber, H., Gaiser, T., & Ewert, F. (2014). What role can crop models play in supporting climate change adaptation decisions to enhance food security in sub-Saharan Africa? Agricultural Systems, 127, 161–177.CrossRefGoogle Scholar
  142. Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 107(33), 14562–14567.CrossRefGoogle Scholar
  143. Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513.CrossRefGoogle Scholar
  144. White, J. W., Boote, K. J., Hoogenboom, G., & Jones, P. G. (2007). Regression-based evaluation of ecophysiological models. Agronomy Journal, 99(2), 419–427.CrossRefGoogle Scholar
  145. White, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357–368.CrossRefGoogle Scholar
  146. Yadav, M., Sharma, M. P., Prawasi, R., Khichi, R., Kumar, P., Mandal, V. P., Salim, A., & Hooda, R. S. (2014). Estimation of wheat/rice residue burning areas in major districts of Haryana, India, using remote sensing data. Journal of the Indian Society of Remote Sensing, 42(2), 343–352.CrossRefGoogle Scholar
  147. Yin, X. (2013). Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity. Annals of Botany, 112(3), 465–475.CrossRefGoogle Scholar
  148. Yin, X., & Struik, P. C. (2010). Modelling the crop: from system dynamics to systems biology. Journal of Experimental Botany, 61(8), 2171–2183.CrossRefGoogle Scholar
  149. Zhang, M., Wu, B., Yu, M., Zou, W., & Zheng, Y. (2014). Crop condition assessment with adjusted NDVI using the uncropped arable land ratio. Remote Sensing, 6(6), 5774–5794.CrossRefGoogle Scholar
  150. Zhao, J., Luo, Q., Deng, H., & Yan, Y. (2008). Opportunities and challenges of sustainable agricultural development in China. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363(1492), 893–904.CrossRefGoogle Scholar
  151. Ziska, L. H., & Bunce, J. A. (2007). Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytologist, 175(4), 607–618.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.High Altitude BiologyCSIR—Institute of Himalayan Bioresource TechnologyPalampurIndia

Personalised recommendations