Investigating the causality of changes in the landscape pattern of Lake Urmia basin, Iran using remote sensing and time series analysis

  • Majid Ramezani Mehrian
  • Raul Ponce Hernandez
  • Ahmad Reza Yavari
  • Shahrzad Faryadi
  • Esmaeil Salehi


Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake’s water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.


Lake Urmia basin Time series analysis Remote sensing 


  1. Abbaspour, M., Javid, A., Mirbagheri, S., Givi, F. A., & Moghimi, P. (2012). Investigation of lake drying attributed to climate change. International journal of Environmental Science and Technology, 9(2), 257–266.CrossRefGoogle Scholar
  2. Abbaspour, M., & Nazaridoust, A. (2007). Determination of environmental water requirements of Lake Urmia, Iran: an ecological approach. International Journal of Environmental Studies, 64(2), 161–169.CrossRefGoogle Scholar
  3. Alesheikh, A. A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International journal of Environmental Science and Technology, 4(1), 61–66. doi: 10.1007/BF03325962. CrossRefGoogle Scholar
  4. Banihabib, M. E., Azarnivand, A., & Peralta, R. C. (2015). A new framework for strategic planning to stabilize a shrinking lake. Lake and Reservoir Management, 31(1), 31–43.CrossRefGoogle Scholar
  5. Benedetti, R., & Rossini, P. (1993). On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sensing of Environment, 45(3), 311–326. doi: 10.1016/0034-4257(93)90113-C. CrossRefGoogle Scholar
  6. Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258. doi: 10.1016/j.isprsjprs.2003.10.002. CrossRefGoogle Scholar
  7. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.CrossRefGoogle Scholar
  8. Burnett, C., & Blaschke, T. (2003). A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecological Modelling, 168(3), 233–249. doi: 10.1016/S0304-3800(03)00139-X. CrossRefGoogle Scholar
  9. Cleve, C., Kelly, M., Kearns, F. R., & Moritz, M. (2008). Classification of the wildland–urban interface: a comparison of pixel-and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 32(4), 317–326.CrossRefGoogle Scholar
  10. Darwish, A., Leukert, K., & Reinhardt, W. (2003). Image segmentation for the purpose of object-based classification. In International Geoscience and Remote Sensing Symposium (Vol. 3, pp. III: 2039–2041).Google Scholar
  11. Deering, D. W. (1978). Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. dissertation, Texas A&M University. (224312611), p. 338.Google Scholar
  12. Definiens (2005). eCognition developer software. Munich: eCognition Professional. Google Scholar
  13. ESRI (2004). ArcGIS software. Redlands, CA: Environmental Systems Research Institute.Google Scholar
  14. Farzin, S., Ifaei, P., Farzin, N., Hassanzadeh, Y., & Aalami, M. (2012). An investigation on changes and prediction of Urmia Lake water surface evaporation by chaos theory. International Journal of Environmental Research, 6(3), 815–824.Google Scholar
  15. Fathian, F., Morid, S., & Kahya, E. (2015). Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theoretical and Applied Climatology, 119(3–4), 443–464. doi: 10.1007/s00704-014-1120-4. CrossRefGoogle Scholar
  16. Ghaheri, M., Baghal-Vayjooee, M., & Naziri, J. (1999). Lake Urmia, Iran: a summary review. International Journal of Salt Lake Research, 8(1), 19–22.Google Scholar
  17. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1), 182–196.CrossRefGoogle Scholar
  18. Hassanzadeh, E., Zarghami, M., & Hassanzadeh, Y. (2012). Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management, 26(1), 129–145.CrossRefGoogle Scholar
  19. ISCE (2011). Evaluating the sustainability of the development process and its impact on Urmia Lake. Tehran: Iranian Society of Consulting Engineers.Google Scholar
  20. Kakahaji, H., Banadaki, H. D., Kakahaji, A., & Kakahaji, A. (2013). Prediction of Urmia Lake water-level fluctuations by using analytical, linear statistic and intelligent methods. Water Resources Management, 27(13), 4469–4492.CrossRefGoogle Scholar
  21. Karimi, N., & Mobasheri, M. R. (2011) Shoreline change analysis of Urmia Lake using multi-temporal satellite images. In Eighteenth National Conference on Geomatics, Iran, Tehran (pp. 88–96).Google Scholar
  22. Kavehkar, S., Ghorbani, M. A., Khokhlov, V., Ashrafzadeh, A., & Darbandi, S. (2011). Exploiting two intelligent models to predict water level: a field study of Urmia lake, Iran. International Journal of Civil and Environmental Engineering, 3(3), 162–166.Google Scholar
  23. Kendall, M. G. (1975). Rank correlation methods. New York: Oxford Univ. Press.Google Scholar
  24. Khatami, S., & Berndtsson, R. (2013). Urmia Lake watershed restoration in Iran: short-and long-term perspectives. In 6th International Perspective on Water Resources & the Environment conference (IPWE 2013). Environmental & Water Resources Institute (EWRI)/American Society of Civil Engineers (ASCE).Google Scholar
  25. Luo, G., Zhou, C., Chen, X., & Li, Y. (2008). A methodology of characterizing status and trend of land changes in oases: a case study of Sangong River watershed, Xinjiang, China. Journal of Environmental Management, 88(4), 775–783.CrossRefGoogle Scholar
  26. Mann, H. B. (1945). Nonparametric tests against trend, Econometrica. Econometrica, 13.Google Scholar
  27. RDevelopmentCoreTeam (2005). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  28. Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6(5), 4173–4189.CrossRefGoogle Scholar
  29. Rokni, K., Ahmad, A., Solaimani, K., & Hazini, S. (2015). A new approach for surface water change detection: integration of pixel level image fusion and image classification techniques. International Journal of Applied Earth Observation and Geoinformation, 34, 226–234. doi: 10.1016/j.jag.2014.08.014. CrossRefGoogle Scholar
  30. Serrano, A., Mateos, V. L., & Garcia, J. A. (1999). Trend analysis of monthly precipitation over the iberian peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(1–2), 85–90. doi: 10.1016/S1464-1909(98)00016-1. CrossRefGoogle Scholar
  31. Sima, S., Ahmadalipour, A., Shafiee Jood, M., Tajrishy, M., & Abrishamchi, A. (2012) Monitoring Urmia Lake area variation using MODIS Satellite data. In World Environmental and Water Resources Congress 2012 (pp. 20–24).Google Scholar
  32. Sima, S., Ahmadalipour, A., & Tajrishy, M. (2013). Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sensing of Environment, 136, 374–385.CrossRefGoogle Scholar
  33. Sima, S., & Tajrishy, M. (2013). Using satellite data to extract volume–area–elevation relationships for Urmia Lake, Iran. Journal of Great Lakes Research, 39(1), 90–99. doi: 10.1016/j.jglr.2012.12.013. CrossRefGoogle Scholar
  34. Tisseuil, C., Roshan, G. R., Nasrabadi, T., & Asadpour, G. (2012). Statistical modeling of future lake level under climatic conditions, case study of Urmia Lake (Iran). International Journal of Environmental Research, 7(1), 69–80.Google Scholar
  35. Tucker, C., Justice, C., & Prince, S. (1986). Monitoring the grasslands of the Sahel 1984-1985. International Journal of Remote Sensing, 7(11), 1571–1581.CrossRefGoogle Scholar
  36. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.CrossRefGoogle Scholar
  37. Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., et al. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498.CrossRefGoogle Scholar
  38. Turner, B. L. II, Ross, R. H., & Skole, D. (1993). Relating land use/land cover and global land cover change. (Vol. No. 24 and HDP Report No. 5, IGBP of the ICSU and HDP of the ISSC). Stockholm and Geneva: IGBP Report.Google Scholar
  39. UNESCO (2009). List of Biosphere Reserves which are wholly or partially Ramsar Wetlands. Official site [online], updated 21 April 2009, internet website: Accessed 10 Sept 2015.
  40. Wang, S., & Wang, S. (2013). Land use/land cover change and their effects on landscape patterns in the Yanqi Basin, Xinjiang (China). Environmental Monitoring and Assessment, 185(12), 9729–9742.CrossRefGoogle Scholar
  41. WRI (2006). In S. Report (Ed.), Integrated water resources management of Urmia Lake. Tehran: Water Research Institute.Google Scholar
  42. Yang, X., & Lo, C. (2003). Modelling urban growth and landscape changes in the Atlanta metropolitan area. International Journal of Geographical Information Science, 17(5), 463–488.CrossRefGoogle Scholar
  43. Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1), 254–271.CrossRefGoogle Scholar
  44. Zha, Y., Liu, Y., & Deng, X. (2008). A landscape approach to quantifying land cover changes in Yulin, Northwest China. Environmental Monitoring and Assessment, 138(1–3), 139–147.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Majid Ramezani Mehrian
    • 1
  • Raul Ponce Hernandez
    • 2
  • Ahmad Reza Yavari
    • 1
  • Shahrzad Faryadi
    • 1
  • Esmaeil Salehi
    • 1
  1. 1.Department of Environmental Planning, Faculty of EnvironmentTehran UniversityTehranIran
  2. 2.Department of GeographyTrent UniversityPeterboroughCanada

Personalised recommendations