Skip to main content

Advertisement

Log in

Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayenew, T., Becht, R., Lieshout, A. V., Gebreegziabher, Y., Legesse, D., & dan Onyando, J. (2007). Hydrodynamics of topographically closed lakes in the Ethio-Kenyan Rift: the case of Lakes Awassa and Naivasha. Spatial Hydrology, 7(1), 81–100.

    Google Scholar 

  • Becht, R., & Harper, D. M. (2002). Towards an understanding of human impact upon the hydrology of lake Navaisha, Kenya. Hydrobiologia, 488, 1–11.

    Article  Google Scholar 

  • Bengtsson L., Herschy R.W., Fairbridge R.W. (2012). Encyclopedia of lakes and reservoirs. 863–864.

  • Cohen, A. S. (2003). Paleolimnology: the history and evolution of lake systems. New York: Oxford University Press, Inc.

    Google Scholar 

  • Dinka, M. O., Loiskandi, W., & dan Ndambuki, J. M. (2014). Hydrologic modelling for Lake Basaka: development and application of a conceptual water budget model. Environment Monitoring and Assessment. doi:10.1007/s10661-014-3785-7.

    Google Scholar 

  • Effendi, T. A. (1985). Peta Hidrogeologi Indonesia Lembar VI: Pekalongan. Bandung: Direktorat Geologi Tata Lingkungan.

    Google Scholar 

  • Fei, J., Lai, Z. P., He, H. M., & Zhou, J. (2012). Historical water level change of Lake Weishan in East China from 1758–1902 AD: relationship with the flooding of the Yellow River. Limnology, 13, 117–124.

    Article  Google Scholar 

  • Gupta, P. L., & dan Panigrahy, S. (2008). Predicting the spatio-temporal variation of run-off generation in India using remotely sensed input and soil conservation service curve number model. Current Science, 95(11), 1580–1587.

    Google Scholar 

  • Hayashi, M., & van der Kamp, G. (2007). Water level changes in ponds and lakes: the hydrological processes. In E. Johnson & K. dan Miyanishi (Eds.), Plant disturbance ecology: the process and the response (pp. 311–337). California: Elsevier.

    Chapter  Google Scholar 

  • James, L. G. (1988). Principles of irrigation system design. Canada: John Wiley and Sons.

    Google Scholar 

  • Kitlasten, W., & Fogg, G. E. (2015). Hydrogeology of a groundwater sustained montane peatland: Grass Lake, California. Wetlands Ecological Management. doi:10.1007/s11273-9422-6.

    Google Scholar 

  • Ly, S., Charles, C., & Degré, A. (2011). Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydorolgical and Earth System Science, 15, 2259–2274.

    Article  Google Scholar 

  • Mather, J. R. (1974). Climatology: fundamental and applications. New York: McGraw-Hill Book Company, Inc.

    Google Scholar 

  • Nathenson, M., Bacon, C. R., & dan Ramsey, D. (2007). Subaqueous geology and filling model for Crater Lake, Oregon. Hydrobiologia, 574(2), 13–17.

    Google Scholar 

  • O’Sulliivan, P. E., dan Reynolds, C. S. (2004). The Lakes Handbook. Volume 1: Limnology and Limnetic Ecology. Oxford: Blackwell Science Ltd.

  • Redmond, K. T. (2007). Evaporation and the hydrologic budget of crater lake Oregon. Hydrobiologia, 574, 29–46.

  • Rosenberry, D. O., Stannard, D. I., Winter, T. C., & dan Martinez, M. L. (2004). Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake area, North Dakota, USA. Wetlands, 24, 483–397.

    Article  Google Scholar 

  • Rossenberry, D. O., Winter, T. C., Buso, D. C., & Likens, G. E. (2007). Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology, 340, 149–166.

    Article  Google Scholar 

  • Setegn, S. G., Chowdary, V. M., Mal, B. C., Yonannes, F., & dan Kono, Y. (2011). Water balance study and irrigation strategies for sustainable management of tropical Ethiopian Lake: a case study of Lake Alemaya. Water Resour Management, 25, 2081–2107.

    Article  Google Scholar 

  • Seyhan, E. (1990). Dasar- Dasar Hidrologi. Yogyakarta: Gadjah Mada University Press.

    Google Scholar 

  • Singh, S., Kumar, B., Thakural, L. N., & Galkate, R. (2009). A comprehensive study on water balance, sedimentation and physico-chemical characteristic of Sagar Lake in India. Environmental Monitoring Assessment, 148, 265–276.

    Article  CAS  Google Scholar 

  • Sitompul, Z. (2013). Pengaruh El Nino Southern Oscillation (ENSO) terhadap Curah Hujan Musiman dan Tahunan di Indonesia. Jurnal Bumi Indonesia, 2(1), 11–18.

  • Sudarmadji. (2010). Dampak Perubahan Penggunaan Lahan terhadap Lingkungan Danau di Daratan Tinggi Dieng, Jawa tengah. Prosiding Seminar Nasional Limnologi V. 370–385.

  • Sudibyakto, Y. T., Supripto, B. A., & dan Kurniawan, A. (2002). Pemetaan Kondisi Sumberdaya Alam Kawasan Dataran Tinggi Dieng. Prosiding Seminar Hasil-hasil Penelitian Fakultas Geografi UGM Tahun 2002. Yogyakarta: Fakultas Geografi Universitas Gadjah Mada.

    Google Scholar 

  • Szesztay, K. (1974). Water balance and water level fluctuations of lakes. Hydrological Science, XIX, 73–84.

    Article  Google Scholar 

  • Timms, B. V. (1992). Lake geomorphology. Adelaide: Glenaegles Publishing.

    Google Scholar 

  • van Bergen, M. J., Bernard, A., Sumarti, S., Sriwarna, T., & dan Sitorus, K. (2000). Crater lakes of Java: Dieng, Kelud, Ijen. Excursion guidebook. Bali: IAVCEI General Assembly.

    Google Scholar 

  • Van Oel, P. R., Mulatu, D. W., Odongo, V. O., Meins, F. M., Hogeboom, R. J., Becht, R., Stein, A., Onyando, J. O., & dan Van der Veen, A. (2013). The effects of groundwater and surface water use on total water availability and implications for water management: the case of Lake Naivasha, Kenya. Water Resource Management, 27, 3477–3492.

    Article  Google Scholar 

  • White, F. M. (1998). Fluid mechanics (4th ed.). New York: Mc Graw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lintang N. Fadlillah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadlillah, L.N., Widyastuti, M. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia. Environ Monit Assess 188, 448 (2016). https://doi.org/10.1007/s10661-016-5452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5452-7

Keywords

Navigation