Advertisement

Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia

  • Lintang N. Fadlillah
  • M. Widyastuti
Article
  • 250 Downloads

Abstract

Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

Keywords

Lake water balance Hydrological model Potato farming Agriculture Irrigation water pumping 

References

  1. Ayenew, T., Becht, R., Lieshout, A. V., Gebreegziabher, Y., Legesse, D., & dan Onyando, J. (2007). Hydrodynamics of topographically closed lakes in the Ethio-Kenyan Rift: the case of Lakes Awassa and Naivasha. Spatial Hydrology, 7(1), 81–100.Google Scholar
  2. Becht, R., & Harper, D. M. (2002). Towards an understanding of human impact upon the hydrology of lake Navaisha, Kenya. Hydrobiologia, 488, 1–11.CrossRefGoogle Scholar
  3. Bengtsson L., Herschy R.W., Fairbridge R.W. (2012). Encyclopedia of lakes and reservoirs. 863–864.Google Scholar
  4. Cohen, A. S. (2003). Paleolimnology: the history and evolution of lake systems. New York: Oxford University Press, Inc.Google Scholar
  5. Dinka, M. O., Loiskandi, W., & dan Ndambuki, J. M. (2014). Hydrologic modelling for Lake Basaka: development and application of a conceptual water budget model. Environment Monitoring and Assessment. doi: 10.1007/s10661-014-3785-7.Google Scholar
  6. Effendi, T. A. (1985). Peta Hidrogeologi Indonesia Lembar VI: Pekalongan. Bandung: Direktorat Geologi Tata Lingkungan.Google Scholar
  7. Fei, J., Lai, Z. P., He, H. M., & Zhou, J. (2012). Historical water level change of Lake Weishan in East China from 1758–1902 AD: relationship with the flooding of the Yellow River. Limnology, 13, 117–124.CrossRefGoogle Scholar
  8. Gupta, P. L., & dan Panigrahy, S. (2008). Predicting the spatio-temporal variation of run-off generation in India using remotely sensed input and soil conservation service curve number model. Current Science, 95(11), 1580–1587.Google Scholar
  9. Hayashi, M., & van der Kamp, G. (2007). Water level changes in ponds and lakes: the hydrological processes. In E. Johnson & K. dan Miyanishi (Eds.), Plant disturbance ecology: the process and the response (pp. 311–337). California: Elsevier.CrossRefGoogle Scholar
  10. James, L. G. (1988). Principles of irrigation system design. Canada: John Wiley and Sons.Google Scholar
  11. Kitlasten, W., & Fogg, G. E. (2015). Hydrogeology of a groundwater sustained montane peatland: Grass Lake, California. Wetlands Ecological Management. doi: 10.1007/s11273-9422-6.Google Scholar
  12. Ly, S., Charles, C., & Degré, A. (2011). Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydorolgical and Earth System Science, 15, 2259–2274.CrossRefGoogle Scholar
  13. Mather, J. R. (1974). Climatology: fundamental and applications. New York: McGraw-Hill Book Company, Inc.Google Scholar
  14. Nathenson, M., Bacon, C. R., & dan Ramsey, D. (2007). Subaqueous geology and filling model for Crater Lake, Oregon. Hydrobiologia, 574(2), 13–17.Google Scholar
  15. O’Sulliivan, P. E., dan Reynolds, C. S. (2004). The Lakes Handbook. Volume 1: Limnology and Limnetic Ecology. Oxford: Blackwell Science Ltd.Google Scholar
  16. Redmond, K. T. (2007). Evaporation and the hydrologic budget of crater lake Oregon. Hydrobiologia, 574, 29–46.Google Scholar
  17. Rosenberry, D. O., Stannard, D. I., Winter, T. C., & dan Martinez, M. L. (2004). Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake area, North Dakota, USA. Wetlands, 24, 483–397.CrossRefGoogle Scholar
  18. Rossenberry, D. O., Winter, T. C., Buso, D. C., & Likens, G. E. (2007). Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology, 340, 149–166.CrossRefGoogle Scholar
  19. Setegn, S. G., Chowdary, V. M., Mal, B. C., Yonannes, F., & dan Kono, Y. (2011). Water balance study and irrigation strategies for sustainable management of tropical Ethiopian Lake: a case study of Lake Alemaya. Water Resour Management, 25, 2081–2107.CrossRefGoogle Scholar
  20. Seyhan, E. (1990). Dasar- Dasar Hidrologi. Yogyakarta: Gadjah Mada University Press.Google Scholar
  21. Singh, S., Kumar, B., Thakural, L. N., & Galkate, R. (2009). A comprehensive study on water balance, sedimentation and physico-chemical characteristic of Sagar Lake in India. Environmental Monitoring Assessment, 148, 265–276.CrossRefGoogle Scholar
  22. Sitompul, Z. (2013). Pengaruh El Nino Southern Oscillation (ENSO) terhadap Curah Hujan Musiman dan Tahunan di Indonesia. Jurnal Bumi Indonesia, 2(1), 11–18.Google Scholar
  23. Sudarmadji. (2010). Dampak Perubahan Penggunaan Lahan terhadap Lingkungan Danau di Daratan Tinggi Dieng, Jawa tengah. Prosiding Seminar Nasional Limnologi V. 370–385.Google Scholar
  24. Sudibyakto, Y. T., Supripto, B. A., & dan Kurniawan, A. (2002). Pemetaan Kondisi Sumberdaya Alam Kawasan Dataran Tinggi Dieng. Prosiding Seminar Hasil-hasil Penelitian Fakultas Geografi UGM Tahun 2002. Yogyakarta: Fakultas Geografi Universitas Gadjah Mada.Google Scholar
  25. Szesztay, K. (1974). Water balance and water level fluctuations of lakes. Hydrological Science, XIX, 73–84.CrossRefGoogle Scholar
  26. Timms, B. V. (1992). Lake geomorphology. Adelaide: Glenaegles Publishing.Google Scholar
  27. van Bergen, M. J., Bernard, A., Sumarti, S., Sriwarna, T., & dan Sitorus, K. (2000). Crater lakes of Java: Dieng, Kelud, Ijen. Excursion guidebook. Bali: IAVCEI General Assembly.Google Scholar
  28. Van Oel, P. R., Mulatu, D. W., Odongo, V. O., Meins, F. M., Hogeboom, R. J., Becht, R., Stein, A., Onyando, J. O., & dan Van der Veen, A. (2013). The effects of groundwater and surface water use on total water availability and implications for water management: the case of Lake Naivasha, Kenya. Water Resource Management, 27, 3477–3492.CrossRefGoogle Scholar
  29. White, F. M. (1998). Fluid mechanics (4th ed.). New York: Mc Graw-Hill.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Environmental Geography, Faculty of GeographyUniversity of Gadjah MadaYogyakartaIndonesia

Personalised recommendations