Skip to main content

Advertisement

Log in

The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Taxonomic richness is one of the most important measures of biological diversity in ecological studies, including those with stream macroinvertebrates. However, it is impractical to measure the true richness of any site directly by sampling. Our objective was to evaluate the effect of sampling effort on estimates of macroinvertebrate family and Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera richness at two scales: basin and stream site. In addition, we tried to determine which environmental factors at the site scale most influenced the amount of sampling effort needed. We sampled 39 sites in the Cerrado biome (neotropical savanna). In each site, we obtained 11 equidistant samples of the benthic assemblage and multiple physical habitat measurements. The observed basin-scale richness achieved a consistent estimation from Chao 1, Jack 1, and Jack 2 richness estimators. However, at the site scale, there was a constant increase in the observed number of taxa with increased number of samples. Models that best explained the slope of site-scale sampling curves (representing the necessity of greater sampling effort) included metrics that describe habitat heterogeneity, habitat structure, anthropogenic disturbance, and water quality, for both macroinvertebrate family and EPT genera richness. Our results demonstrate the importance of considering basin- and site-scale sampling effort in ecological surveys and that taxa accumulation curves and richness estimators are good tools for assessing sampling efficiency. The physical habitat explained a significant amount of the sampling effort needed. Therefore, future studies should explore the possible implications of physical habitat characteristics when developing sampling objectives, study designs, and calculating the needed sampling effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284.

    Article  Google Scholar 

  • Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience, 43(1), 32–43.

    Article  Google Scholar 

  • Arita, H. T., & Vázquez-Domínguez, E. (2008). The tropics: cradle, museum or casino? A dynamic null model for latitudinal gradients of diversity. Ecology Letters, 11(7), 653–663.

    Article  Google Scholar 

  • Bady, P., Doledec, S., Fesl, C., Gayraud, S., Bacchi, M., & Scholl, F. (2005). Use of invertebrate traits for biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshwater Biology, 50(1), 159–173.

    Article  Google Scholar 

  • Bartsch, L. A., Richardson, W. B., & Naimo, T. J. (1998). Sampling benthic macroinvertebrates in a large flood-plain river: considerations of study design, sample size, and cost. Environmental Monitoring and Assessment, 52(3), 425–439.

    Article  Google Scholar 

  • Basualdo, C. V. (2011). Choosing the best non-parametric richness estimator for benthic macroinvertebrates databases. Revista de la Sociedad Entomológica Argentina, 70(1–2), 27–38.

    Google Scholar 

  • Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51, 495–523.

    Article  CAS  Google Scholar 

  • Brasil. (1992). Normais Climatológicas (1960–1990). Ministério da Agricultura e Reforma Agrária, Secretaria Nacional de Irrigação, Departamento Nacional de Meteorologia, Brasília, 84 p

  • Brown, R. L., Jacobs, L. A., & Peet, R. K. (2007). Species richness: small scale. In Encyclopedia of Life Sciences (pp. 1–8). John Wiley & Sons Ltd.

  • Burnham, K. P., & Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65(3), 625–633.

    Article  Google Scholar 

  • Buss, D. F., & Vitorino, A. S. (2010). Rapid bioassessment protocols using benthic macroinvertebrates in Brazil: evaluation of taxonomic sufficiency. Journal of the North American Benthological Society, 29(2), 562–571.

    Article  Google Scholar 

  • Buss, D. F., Carlisle, D. M., Chon, T. S., Culp, J., Harding, J. S., Keizer-Vlek, H. E., Robinson, W. A., Strachan, S., Thirion, C., & Hughes, R. M. (2015). Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environmental Monitoring and Assessment, 187(1), 4132.

    Article  Google Scholar 

  • Cao, Y., Larsen, D. P., & Hughes, R. M. (2001). Evaluating sampling sufficiency in fish assemblage surveys: a similarity-based approach. Canadian Journal of Fisheries and Aquatic Sciences, 58(9), 1782–1793.

    Article  Google Scholar 

  • Cao, Y., Larsen, D. P., Hughes, R. M., Angermeier, P. L., & Patton, T. M. (2002). Sampling effort affects multivariate comparisons of stream communities. Journal of the North American Benthological Society, 21(4), 701–714.

    Article  Google Scholar 

  • Cao, Y., Williams, D. D., & Williams, N. E. (1998). How important are rare species in aquatic community ecology bioassessment? Limnology and Oceanography, 43(7), 1403–1409.

    Article  Google Scholar 

  • Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4), 265–270.

    Google Scholar 

  • Chao, A. (2005). Species estimation and applications. In N. Balakrishnan, C. B. Read, & B. Vidakovic (Eds.), Encyclopedia of statistical sciences (pp. 7909–7916). New York: Wiley.

    Google Scholar 

  • Chen, K., Hughes, R. M., Xu, S., Zhang, J., Cai, D., & Wang, B. (2014). Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples. Ecological Indicators, 36, 142–151.

    Article  Google Scholar 

  • Clarke, A., Macnally, R., Bond, N. R., & Lake, P. S. (2008). Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology, 53(9), 1707–1721.

    Article  Google Scholar 

  • Cole, M. B. (2004). Assessment of macroinvertebrate communities in and adjacent to the city of Wilsonville, Oregon. Oregon: Unpublished report prepared for the City of Wilsonville.

    Google Scholar 

  • Colwell, R. K. (2006). EstimateS: statistical estimation of species richness and shared species from samples. Version 8. Persistent URL < purl.oclc.org/estimates>

  • Connolly, N. M., Crossland, M. R., & Pearson, R. G. (2004). Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society, 23(2), 251–270.

    Article  Google Scholar 

  • Costa, C., Ide, S., & Simonka, C. E. (2006). Insetos imaturos - metamorfose e identificação. Ribeirão Preto: Holos Editora.

    Google Scholar 

  • Dodds, W. K. (2002). Freshwater ecology: concepts and environmental applications. San Diego: Academic Press.

    Google Scholar 

  • dos Anjos, M. B., & Zuanon, J. (2007). Sampling effort and fish species richness in small terra firme forest streams of central Amazonia, Brazil. Neotropical Ichthyology, 5(1), 45–52.

    Article  Google Scholar 

  • Drury, D. M., & Kelso, W. E. (2000). Invertebrate colonization of woody debris in coastal plain streams. Hydrobiologia, 434(1), 63–72.

    Article  Google Scholar 

  • Feio, M. J., Ferreira, W. R., Macedo, D. R., Eller, A. P., Alves, C. B. M., França, J. S., & Callisto, M. (2013). Defining and testing targets for the recovery of tropical streams based on macroinvertebrates communities and abiotic conditions. River Research and Applications, 31(1), 70–85.

    Article  Google Scholar 

  • Fernández, H. R., & Domínguez, E. (2001). Guia para la determinación de los artrópodos bentônicos sudamericanos. Tucumán: Universidad Nacional de Tucumán.

    Google Scholar 

  • Ferreira, W. R., Ligeiro, R., Macedo, D. R., Hughes, R. M., Kaufmann, P. R., Oliveira, L. G., & Callisto, M. (2014). Importance of environmental factors for the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshwater Science, 33(3), 860–871.

    Article  Google Scholar 

  • Ferreira, W. R., Paiva, L. T., & Callisto, M. (2011). Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology, 71(1), 15–25.

    Article  CAS  Google Scholar 

  • Freemark, K. E., Meyers, M., White, D., Warman, L. D., Kiester, A. R., & Lumban-Tobing, P. (2006). Species richness and biodiversity conservation priorities in British Columbia, Canada. Canadian Journal of Zoology, 84(1), 20–31.

    Article  Google Scholar 

  • Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227.

    Article  CAS  Google Scholar 

  • Gerth, W. J., & Herlihy, A. T. (2006). Effect of sampling different habitat types in regional macroinvertebrate bioassessment surveys. Journal of the North American Benthological Society, 25(2), 501–512.

    Article  Google Scholar 

  • Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379–391.

    Article  Google Scholar 

  • Gotelli, N. J., & Colwell, R. K. (2010). Estimating species richness. In A. E. Magurran & B. J. McGill (Eds.), Biological diversity: frontiers in measurement and assessment (pp. 39–54). Oxford: Oxford University Press.

    Google Scholar 

  • Haggerty, S. M., Batzer, D. P., & Jackson, C. R. (2004). Macroinvertebrate response to logging in coastal headwater streams of Washington, USA. Canadian Journal of Fisheries and Aquatic Sciences, 61(4), 529–537.

    Article  Google Scholar 

  • Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10(5), 1456–1477.

    Article  Google Scholar 

  • Heino, J. (2002). Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation, 11(1), 137–147.

    Article  Google Scholar 

  • Heino, J. (2011). A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology, 56(9), 1703–1722.

    Article  Google Scholar 

  • Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., Heiskanen, A.-S., Johnson, R. K., Moe, J., Pont, D., Solheim, A. L., & van de Bund, W. (2010). The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the Total Environment, 408(19), 4007–4019.

    Article  CAS  Google Scholar 

  • Hughes, R. M., & Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society, 27(4), 837–859.

    Article  Google Scholar 

  • Hughes, R. M., Herlihy, A. T., Gerth, W. J., & Pan, Y. (2012). Estimating vertebrate, benthic macroinvertebrate and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environmental Monitoring and Assessment, 184(5), 3185–3198.

    Article  CAS  Google Scholar 

  • Hughes, R. M., Kaufmann, P. R., Herlihy, A. T., Intelmann, S. S., Corbett, S. C., Arbogast, M. C., & Hjort, R. C. (2002). Electrofishing distance needed to estimate fish species richness in raftable Oregon rivers. North American Journal of Fisheries Management, 22(4), 1229–1240.

    Article  Google Scholar 

  • Hulbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52(4), 577–585.

    Article  Google Scholar 

  • Johnson, Z. B., & Kennedy, J. H. (2003). Macroinvertebrate assemblages of submerged woody debris in the Elm Fork of the Trinity River, Texas. Journal of Freshwater Ecology, 18(2), 187–197.

    Article  Google Scholar 

  • Jones, F. C. (2008). Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews, 16, 45–69.

    Article  Google Scholar 

  • Kaller, M. D., & Kelso, W. E. (2007). Association of macroinvertebrate assemblages with dissolved oxygen concentration and wood surface area in selected subtropical streams of the southeastern USA. Aquatic Ecology, 41(1), 95–110.

    Article  CAS  Google Scholar 

  • Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C., & Peck, D. V. (1999). Quantifying physical habitat in wadeable streams EPA/620/R-99/003. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Klemm, D. J., Blocksom, K. A., Fulk, F. A., Herlihy, A. T., Hughes, R. M., Kaufmann, P. R., Peck, D. V., Stoddard, J. L., Thoeny, W. T., Griffith, M. B., & Davis, W. S. (2003). Development and evaluation of a macroinvertebrate Biotic Integrity Index (MBII) for regionally assessing mid-atlantic highlands streams. Environmental Management, 31(5), 656–669.

    Article  Google Scholar 

  • Leitão, R. P., Zuanon, J., Villéger, S., Williams, S. E., Baraloto, C., Fortunel, C., Mendoça, F. P., & Mouillot, D. (2016). Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B. doi:10.1098/rspb.2016.0084.

    Google Scholar 

  • Lenat, D. R., & Resh, V. H. (2001). Taxonomy and stream ecology—the benefits of genus- and species-level identifications. Journal of the North American Benthological Society, 20(2), 287–298.

    Article  Google Scholar 

  • Li, J., Herlihy, A., Gerth, W., Kaufmann, P., Gregory, S., Urquhart, S., & Larsen, D. P. (2001). Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology, 46(1), 87–97.

    Article  Google Scholar 

  • Li, L., Liu, L., Hughes, R. M., Cao, Y., & Wang, X. (2014). Towards a protocol for stream macroinvertebrate sampling in China. Environmental Monitoring and Assessment, 186(1), 469–479.

    Article  CAS  Google Scholar 

  • Ligeiro, R., Ferreira, W., Hughes, R. M., & Callisto, M. (2013a). The problem of using fixed-area subsampling methods to estimate macroinvertebrate richness: a case study with Neotropical stream data. Environmental Monitoring and Assessment, 185(5), 4077–4085.

    Article  CAS  Google Scholar 

  • Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., & Callisto, M. (2013b). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25, 45–57.

    Article  Google Scholar 

  • Ligeiro, R., Melo, A. S., & Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology, 55(2), 424–435.

    Article  Google Scholar 

  • Lorenz, A., Kirchner, L., & Hering, D. (2004). ‘Electronic subsampling’ of macrobenthic samples: how many individuals are needed for a valid assessment result? Hydrobiologia, 516(1), 299–312.

    Article  Google Scholar 

  • Macedo, D. R., Hughes, R. M., Ferreira, W. R., Firmiano, K. R., Silva, D. R., Ligeiro, R., Kaufmann, P. R., & Callisto, M. (2016). Development of a benthic macroinvertebrate multimetric index (MMI) for Neotropical Savanna headwater streams. Ecological Indicators, 64, 132–141.

  • Macedo, D. R., Hughes, R. M., Ligeiro, R., Ferreira, W. R., Castro, M. A., Junqueira, N. T., Oliveira, D. R., Firmiano, K. R., Kaufmann, P. R., Pompeu, P. S., & Callisto, M. (2014). The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landscape Ecology, 29(6), 1001–1016.

    Article  Google Scholar 

  • Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell Science Ltd.

    Google Scholar 

  • Mao, C. X., & Colwell, R. K. (2005). Estimation of species richness: mixture models, the role of rare species, and inferential challenges. Ecology, 86(5), 1143–1153.

    Article  Google Scholar 

  • Martínez-Sanz, C., García-Criado, F., Fernández-Aláez, C., & Fernández-Aláez, M. (2010). Assessment of richness estimation methods on macroinvertebrate communities of mountain ponds in Castilla y León (Spain). Annales de Limnologie - International Journal of Limnology, 46(2), 101–110.

    Article  Google Scholar 

  • McGarvey, D. J., & Terra, B. F. (2015). Using river discharge to model and deconstruct the latitudinal diversity gradient for fishes of the Western Hemisphere. Journal of Biogeography. doi:10.1111/jbi.12618.

    Google Scholar 

  • Meir, E., Andelman, S., & Possingham, H. P. (2004). Does conservation-planning matter in a dynamic and uncertain world? Ecology Letters, 7(8), 615–622.

    Article  Google Scholar 

  • Melo, A. S. (2004). A critique of the use of jackknife and related non-parametric techniques to estimate species richness. Community Ecology, 5(2), 149–157.

    Article  Google Scholar 

  • Melo, A. S., & Froehlich, C. G. (2001). Evaluation of methods for estimating macroinvertebrate species richness using individual stones in tropical streams. Freshwater Biology, 46(6), 711–721.

    Article  Google Scholar 

  • Mereta, S. T., Boets, P., Bayih, A. A., Malu, A., Ephrem, Z., Sisay, A., Endale, H., Yitbarek, M., Jemal, A., De Meester, L., & Goethals, P. L. M. (2012). Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Ecological Informatics, 7(1), 52–61.

    Article  Google Scholar 

  • Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America. Dubuque: Kendall/Hunt.

    Google Scholar 

  • Monk, W. A., Wood, P. J., Hannah, D. M., Extence, C. A., Chadd, R. P., & Dunbar, M. J. (2012). How does macroinvertebrate taxonomic resolution influence ecohydrological relationships in riverine ecosystems. Ecohydrology, 5(1), 36–45.

    Article  Google Scholar 

  • Moreno, P., França, J. S., Ferreira, W. R., Paz, A. D., Monteiro, I. M., & Callisto, M. (2010). Factors determining the structure and distribution of benthic invertebrate assemblages in a tropical basin. Neotropical Biology and Conservation, 5(3), 135–145.

    Article  Google Scholar 

  • Moya, N., Hughes, R. M., Domínguez, E., Gibon, F. M., Goitia, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecological Indicators, 11(3), 840–847.

    Article  Google Scholar 

  • Mugnai, R., Nessimian, J. L., & Baptista, D. F. (2010). Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Technical Books.

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Oberdorff, T., Guegan, J. F., & Hugueny, B. (1995). Global scale patterns of fish species richness in rivers. Ecography, 18(4), 345–352.

    Article  Google Scholar 

  • Oliveira, R. B. S., Baptista, D. F., Mugnai, R., Castro, C. M., & Hughes, R. M. (2011). Towards rapid bioassessment of wadeable streams in Brazil: development of the Guapiaçu-Macau Multimetric Index (GMMI) based on benthic macroinvertebrates. Ecological Indicators, 11(6), 1584–1593.

    Article  Google Scholar 

  • Oliveira, R. B. S., Mugnai, R., Castro, C. M., & Baptista, D. F. (2010). Determining subsampling effort for the development of a rapid bioassessment using benthic macroinvertebrates in streams of Southeastern Brazil. Environmental Monitoring and Assessment, 175(1), 75–85.

    Google Scholar 

  • Olsen, A. R., & Peck, D. V. (2008). Survey design and extent estimates for the Wadeable Streams Assessment. Journal of the North American Benthological Society, 27(4), 822–836.

    Article  Google Scholar 

  • Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., Lazorchak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., & Cappaert, M. R. (2006). Environmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study field operations manual for wadeable streams (EPA/620/R-06/003). DC: USEPA.Washington.

    Google Scholar 

  • Pérez, G. R. (1988). Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Bogotá: Editorial Presencia Ltda.

    Google Scholar 

  • Petersen, F. T., & Meier, R. (2003). Testing species-richness estimation methods on single-sample collection data using the Danish Diptera. Biodiversity and Conservation, 12(4), 667–686.

    Article  Google Scholar 

  • Schneck, F., & Melo, A. S. (2010). Reliable sample sizes for estimating similarity among macroinvertebrate assemblages in tropical streams. Annales de Limnologie - International Journal of Limnology, 46(2), 93–100.

    Article  Google Scholar 

  • Silva, D. R., Ligeiro, R., Hughes, R. M., & Callisto, M. (2014). Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environmental Monitoring and Assessment, 186(9), 5479–5488.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., & Tarquinio, E. (2008). A process for creating multi-metric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27(4), 878–891.

    Article  Google Scholar 

  • Stout, J., & Vandermeer, J. (1975). Comparison of species richness for stream-inhabiting insects in tropical and midlatitude streams. The American Naturalist, 109(967), 263–280.

    Article  Google Scholar 

  • Systat Software Inc. (2009). SYSTAT statistical package, version 13.0. San Jose, CA: Systat Software, Inc.

    Google Scholar 

  • Vlek, H. E., Sporka, F., & Krno, I. (2006). Influence of macroinvertebrate sample size on bioassessment of streams. Hydrobiologia, 566(1), 523–542.

    Article  Google Scholar 

  • Walther, B. A., & Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology, 116(4), 395–405.

    Article  Google Scholar 

  • Wang, L., Lyons, J., Kanehl, P., & Gatti, R. (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries, 22(6), 6–12.

    Article  Google Scholar 

  • Wantzen, K. M. (2003). Cerrado streams - characteristics of a threatened freshwater ecosystem type on the tertiary shields of South America. Amazoniana, 17(3–4), 485–502.

    Google Scholar 

  • Wantzen, K. M., Siqueira, A., Nunes Da Cunha, C., & Sá, M. F. P. (2006). Stream-valley systems of the Brazilian cerrado: impact assessment and conservation scheme. Aquatic Conservation: Marine and Freshwater Ecosystems, 16(7), 713–732.

    Article  Google Scholar 

  • Whittier, T. R., & Van Sickle, J. (2010). Macroinvertebrate tolerance values and an assemblage tolerance index (ATI) for western USA streams and rivers. Journal of the North American Benthological Society, 29(3), 852–866.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Companhia Energética de Minas Gerais (CEMIG), Projeto de Pesquisa e Desenvolvimento da Agência Nacional de Energia Elétrica (P&D ANEEL) (GT-487), and Programa Peixe-Vivo for research funding. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do estado de Minas Gerais (FAPEMIG), and Fulbright-Brasil provided financial support. MC was awarded research productivity CNPq (no. 303380/2015-2) and research project CNPq (no. 446155/2014-4), and Minas Gerais research grant FAPEMIG PPM-IX - 00525-15. Special thanks to colleagues from the Laboratório de Ecologia de Bentos-UFMG for sample collection and processing assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Déborah R. O. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.R.O., Ligeiro, R., Hughes, R.M. et al. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales. Environ Monit Assess 188, 340 (2016). https://doi.org/10.1007/s10661-016-5326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5326-z

Keywords

Navigation