Advertisement

Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region

  • M. C. Pineda
  • J. Viloria
  • J. A. Martínez-Casasnovas
Article

Abstract

Susceptibility to landslides in mountain areas results from the interaction of various factors related to relief formation and soil development. The assessment of landslide susceptibility has generally taken into account individual events, or it has been aimed at establishing relationships between landslide-inventory maps and maps of environmental factors, without considering that such relationships can change in space and time. In this work, temporal and space changes in landslides were analysed in six different combinations of date and geomorphological conditions, including two different geological units, in a mountainous area in the north-centre of Venezuela, in northern South America. Landslide inventories from different years were compared with a number of environmental factors by means of logistic regression analysis. The resulting equations predicted landslide susceptibility from a range of geomorphometric parameters and a vegetation index, with diverse accuracy, in the study area. The variation of the obtained models and their prediction accuracy between geological units and dates suggests that the complexity of the landslide processes and their explanatory factors changed over space and time in the studied area. This calls into question the use of a single model to evaluate landslide susceptibility over large regions.

Keywords

Logistic regression Mass erosion Hydrographic basin MDE NDVI 

Notes

Acknowledgments

The authors are thankful to the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy; the Venezuelan Organic Law for Science and Technology (LOCTI); and the Council of Scientific and Humanistic Development (CDCH) of the Universidad Central de Venezuela and the Universidad de Lleida (Catalonia, Spain) for financial support and fellowships.

References

  1. Adediran, A. O., Parcharidis, I., Poscolieri, M., & Pavlopoulos, K. (2004). Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients. Geomorphology, 58, 357–370.CrossRefGoogle Scholar
  2. Alexander, D. (2008). A brief survey of GIS in mass-movement studies, with reflections on theory and methods. Geomorphology, 94, 261–267.CrossRefGoogle Scholar
  3. Ardiansyah Prima, O. D., Echigo, A., Yokohama, R., & Yoshida, T. (2006). Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology, 78, 373–386.CrossRefGoogle Scholar
  4. Bai, S., Lü, G., Wang, J., Zhou, P., & Ding, L. (2010). GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environmental Earth Sciences, 62(1), 139–149.CrossRefGoogle Scholar
  5. Böhner, J. (2004). Regionalisierung bodenrelevanter Klimaparameter für das Niedersächsische Landesamt für Bodenforschung (NLfB) und die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Arbeitshefte Boden, 4, 17–66.Google Scholar
  6. Bolongaro-Crevenna, A., Torres-Rodriguez, V., Sorani, V., Framed, D., & Ortiz, M. A. (2005). Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology, 67, 407–422.CrossRefGoogle Scholar
  7. Budetta, P., Santo, A., & Vivenzio, F. (2008). Landslide hazard mapping along the coastline of the Cilento region (Italy) by means of a GIS-based parameter rating approach. Geomorphology, 94, 340–352.CrossRefGoogle Scholar
  8. Burrough, P. A., & McDonell, R. A. (1998). Principles of geographical information systems (p. 190). New York: Oxford University Press.Google Scholar
  9. Calvello, M., Cascini, L., & Mastroianni, S. (2013). Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology, 182, 33–48.CrossRefGoogle Scholar
  10. Can, T., Nefeslioglu, H., Gokceoglu, C., Sonmez, H., & Duman, T. Y. (2005). Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology, 72, 250–271.CrossRefGoogle Scholar
  11. Carrara, A. G., Cardinalli, M., & Guzzetti, F. (1992). Uncertainty in assessing landslide hazard and risk. ITC, 2, 1972–1983.Google Scholar
  12. Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards, 20, 117–135. b.CrossRefGoogle Scholar
  13. Carrara, A., Crosta, G., & Frattini, P. (2008). Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology, 94, 353–378. b.CrossRefGoogle Scholar
  14. Chacón, J., Irigara, E., Fernández, E. T., & El Hamdouni, R. (2006). Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65, 341–411.CrossRefGoogle Scholar
  15. Chau, K. T., & Chan, J. E. (2005). Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island. Landslides, 2, 280–290. doi: 10.1007/s10346-005-0024-x.CrossRefGoogle Scholar
  16. Choi, J., Oh, H.-J., Lee, H.-J., Lee, C., & Lee, S. (2012). Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12–23.CrossRefGoogle Scholar
  17. Chung, C. J. (2006). Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Computers and Geosciences, 32, 1052–1068.CrossRefGoogle Scholar
  18. Claps, P., Fiorentino, M., & Oliveto, G. (1994). Informational entropy of fractal river networks. Journal of Hydrology, 187(1–2), 145–156.Google Scholar
  19. EPOCH (European Community Programme (1993). Temporal occurrence and forecasting of landslides in the European Community, Flageollet, J. C. (ed.), 3 volumes. Contract no. 90 0025.Google Scholar
  20. Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., van den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Herva’S, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263.Google Scholar
  21. D’Amato Avanzi, G., Giannecchini, R., & Puccinelli, A. (2004). The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italia). Engineering Geology, 73, 215–228.CrossRefGoogle Scholar
  22. Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213–228.CrossRefGoogle Scholar
  23. Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., & Althuwaynee, O. F. (2012). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65, 135–165.CrossRefGoogle Scholar
  24. Dewitte, O., Chung, C., Cornet, Y., Daoudi, M., & Demoulin, A. (2010). Combining spatial data in landslide reactivation susceptibility mapping: a likelihood ratio-based approach in W Belgium. Geomorphology, 122, 153–166.CrossRefGoogle Scholar
  25. Douglas, G. B., Mcivor, I. R., Manderson, A. K., Koolaard, J. P., Todd, M., Braaksma, S., & Gray, R. A. J. (2013). Reducing shallow landslide occurrence in pastoral hill country using wide-spaced trees. Land Degradation and Development, 24, 103–114.CrossRefGoogle Scholar
  26. Duman, T. Y. (2005). Interactive comment on “Landslide susceptibility mapping of Cekmece área (Istanbul, Turkey) by conditional probability” by T. Y. Duman et al. Hydrology and Earth System Sciences Discussions, 2, 229–231p.CrossRefGoogle Scholar
  27. Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology, 66, 327–343.CrossRefGoogle Scholar
  28. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.CrossRefGoogle Scholar
  29. Federici, P. R., Puccinelli, A., Cantarelli, E., Casarosa, N., D’Amato Avanzi, G., Falaschi, F., Giannecchini, R., Pochini, A., Ribolini, A., Bottai, M., Salvati, N., & Testi, C. (2006). Multidisciplinary investigations in evaluating landslide susceptibility. An example in the Serchio River valley (Italia). Quaternary Internacional, 171–172, 52–63.Google Scholar
  30. Felicísimo, Á., Cuartero, A., Remondo, J., & Quirós, E. (2012). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides. doi: 10.1007/s10346-012-0320-1.Google Scholar
  31. Frattini, P., Crosta, G., Carrara, A., & Agliardi, F. (2008). Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology, 94, 419–437.CrossRefGoogle Scholar
  32. Gorsevski, P. V., Gessler, P. E., & Jankowski, P. (2003). Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard. Journal of Geographical Systems, 5, 223–251.CrossRefGoogle Scholar
  33. Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., & Foltz, R. B. (2006). Spatially and temporally distributed modeling of landslide susceptibility. Geomorphology, 80, 178–198.CrossRefGoogle Scholar
  34. Greco, R., Sorriso-Valvo, M., & Catalano, E. (2007). Logistic regression analysis in the evaluation of mass movements susceptibility: the Aspromonte case study. Calabria, Italy, Engineering Geology, 89, 47–66.CrossRefGoogle Scholar
  35. Gupta, V., & Sah, M. P. (2008). Spatial variability of mass movements in the Satluj Valley, Himachal Pradesh during 1990 ∼ 2006. Journal of Materials Science, 5, 38–51.Google Scholar
  36. Guzzetti, F., Aleotti, B., Malamud, D., & Turcotte, D.L. (2003). Comparison of three landslide events in central and northern Italy In: Jansà A. & Romero R. (eds.), Proceedings 4th Plinius Conference on Mediterranean Storms, Mallorca, Spain, Universitat de Illes Baleares, CD-ROM. ISBN 84-7632-792-7. 4pGoogle Scholar
  37. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72, 272–299.CrossRefGoogle Scholar
  38. He, S., Pan, P., Dai, L., Wang, H., & Liu, J. (2012). Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology, 171–172, 30–41.CrossRefGoogle Scholar
  39. Hovius, N., Stark, C. P., Tutton, M. A., & Abbott, L. D. (1998). Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea. Geology, 26(12), 1071–1074.CrossRefGoogle Scholar
  40. Hutchinson, J. N. (1968). Mass movement. In R. W. Fairbridge (Ed.), Encyclopedia of earth sciences (pp. 688–695). New York: Reinhold.Google Scholar
  41. Hutchinson, M. F. (1989). A new procedure for gridding elevation and. stream line data with automatic removal of spurious pits. Journal of Hydrology (Amsterdam), 106, 211–232.CrossRefGoogle Scholar
  42. Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11, 425–439.CrossRefGoogle Scholar
  43. Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982–990.CrossRefGoogle Scholar
  44. Lee, S., Ryu, J. H., & Kim, I. S. (2007). Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides, 4, 327–338.CrossRefGoogle Scholar
  45. Magliulo, P., Di Lisio, A., & Russo, F. (2009). Comparison of GIS-based methodologies for the landslide susceptibility assessment. Geoinformatica, 13, 253–265.CrossRefGoogle Scholar
  46. Montgomery, D. R., & Dietrich, W. E. (1989). Source areas, drainage density, and channel initiation. Water Resources Research, 25, 1907–1918.CrossRefGoogle Scholar
  47. Moore, I. D., Grayson, R. B., & Landson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5, 3–30.CrossRefGoogle Scholar
  48. Ng, K. Y. (2006). Landslide locations and drainage network development: a case study of Hong Kong. Geomorphology, 76, 229–239.CrossRefGoogle Scholar
  49. O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323–44.CrossRefGoogle Scholar
  50. Ohlmacher G., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology 69, 331–343. www.elsevier.com/locate/enggeo. Accessed 14 Jan 2012
  51. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.CrossRefGoogle Scholar
  52. Palamakumbure, D., Flentje, P., & Stirling, D. (2015). Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia. Computers & Geosciences, 82, 13–22.CrossRefGoogle Scholar
  53. Parise, M. (2001). Landslide mapping techniques and their use in the assessment of the landslide hazard. Physics and Chemistry of the Earth, 26(9), 697–703.Google Scholar
  54. Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68, 1443–1464.CrossRefGoogle Scholar
  55. Pineda, M. C., Elizalde, G., & Viloria, J. (2011a). Determinación de áreas susceptibles a deslizamientos en un sector de la cordillera de la costa central de Venezuela. Interciencia, 36(5), 370–377.Google Scholar
  56. Pineda, M. C., Elizalde, G., & Viloria, J. (2011b). Relación suelo-paisaje en un sector de la cuenca del Río Caramacate, Aragua, Venezuela. Revista de la Facultad de Agronomía. UCV, 37(1), 27–37.Google Scholar
  57. Pineda, M. C., Viloria, A., & Viloria, J. (2012). Aplicación de regresión logística y redes bayesianas para evaluar susceptibilidad a deslizamientos en montañas. Suelos Ecuatoriales, 42(1), 23–27.Google Scholar
  58. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.CrossRefGoogle Scholar
  59. Remondo, J., González-Díez, A., Díaz de Terán, J. R., & Cendrero, A. (2003). Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba valley, Guipúzcoa (Spain). Natural Hazards, 30(3), 267–279.CrossRefGoogle Scholar
  60. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Proceedings 3rd ERTS Symposium, 1, 48–62.Google Scholar
  61. Shagam, R. (1960). Geology of Central Aragua, Venezuela. Geological Society of America Bulletin, 71, 249–302.CrossRefGoogle Scholar
  62. Shrestha, D. P., & Zinck, J. A. (1999). Land degradation assessment using geographic information system: a case study in the middle mountain region of the Nepalese Himalaya. The Netherlands: International Institute for Aerospace Survey and Earth Sciences (ITC). 19pp.Google Scholar
  63. Tangestani, M. (2003). Landslide susceptibility mapping using the fuzzy gamma operation in a GIS, Kakan catchment area, Iran, Shiraz University, Faculty of Sciences Dept, of Earth Sciences, Shiraz, Iran. Landslide & Soil Erosion. 6p.Google Scholar
  64. Tarboton, D. G., Bras, R. L., & Rodriguez-Iturbe, I. (1991). On the extraction of channel networks from digital elevation data. Hydrologic Processes, 5(1), 81–100.CrossRefGoogle Scholar
  65. Urbani, F., & Rodríguez, J. A. (2003). Atlas geológico de la Cordillera de la Costa, Venezuela. Caracas: Coedición UCV and FUNVISIS.Google Scholar
  66. Van Westen, C. J. (2000). The modelling of landslide hazards using GIS. Surveys in Geophysics, 21, 241–255.CrossRefGoogle Scholar
  67. Varnes, D. J. (1978). Slope movement types and processes, in landslides analysis and control. In R. L. Schuster & R. J. Krizek (Eds.), Transportation research board, special report 176 (pp. 11–35). Washington, DC: National Academy of Science.Google Scholar
  68. Varnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. The International Association of Engineering Geology Commission on Landslides and Other Mass Movements. Natural Hazards, 3–63 (Paris, France. ISBN 92-3- 101895-7)Google Scholar
  69. Viloria-Botello, A., Chang, C., Pineda, M.C., & Viloria-Rendón, J. (2012). Estimation of susceptibility to landslides using neural networks based on the FALCON-ART. 11th International Conference on Machine Learning and Applications ICMLA December 12–15, Boca Raton, Florida, USA.Google Scholar
  70. Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis principles and applications, Wiley, Toronto, p 479 Working Party on World Landslide Inventory, 1993, a suggested method for describing the activity of a landslide. Bulletin of International Association of Engineering Geology, 47, 53–57.Google Scholar
  71. Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Computers & Geosciences, 35, 1125–1138.CrossRefGoogle Scholar
  72. Zhou, C. H., Lee, C. F., Li, J., & Xu, Z. W. (2002). On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology, 43, 197–207.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. C. Pineda
    • 1
  • J. Viloria
    • 1
  • J. A. Martínez-Casasnovas
    • 2
  1. 1.Instituto de Edafología, Facultad de AgronomíaUniversidad Central de VenezuelaMaracayVenezuela
  2. 2.Departamento de Medio Ambiente y Ciencias del SueloUniversidad de LleidaLleidaSpain

Personalised recommendations