Characterization of the indoor particles and their sources in an Antarctic research station

  • Érica Coelho Pagel
  • Neyval Costa ReisJr.
  • Cristina Engel de Alvarez
  • Jane Méri Santos
  • Melina Moreira Conti
  • Ricardo Salvador Boldrini
  • Américo Sansigolo Kerr


Many studies have been carried out on the environmental impact of the research stations on the Antarctic continent. However, the assessment of indoor air quality in these confined environments has been neglected. The main objectives of this study are to investigate the granulometric distribution of the indoor particles in the different compartments of the Brazilian Antarctic Station, to examine the number and mass concentration of the indoor particles, to conduct chemical and morphological analyses of the indoor PM2.5, and to identify the possible sources of the PM. The results showed that Na, K, Cl, Fe, Zn, S and Si were the main elements detected. High levels of black carbon were recorded in the workshop, which may be associated with the use of diesel vehicles. To identify the human activities related to the indoor particle emission in the station, the size distribution of the particles in the living room was monitored for seven consecutive days, during normal station operation. It was possible to identify the influence of individual processes, such as incineration, cooking and the movement of people, upon the particle size number concentration. The indoor/outdoor (I/O) ratio for the total suspended particles (TSP), PM10, PM2.5 and PM1 measured was significantly larger than those reported for urban buildings. In general, the I/O ratio distribution for all the compartments shows peak values between 2.5 and 10 μm, which is often related to human activity, such as cleaning, personnel circulation or clothing surfaces. The maximum I/O ratio at this range varied from 12 to 60. In addition, the compartments affected by combustion processes tend to present a significant number of submicron particles.


Particulate matter Indoor particles Indoor air quality Antarctic station 



The authors wish to thank the FAPES/CNPQ PRONEX, CAPES, INCT-APA, PROANTAR and FINEP, for financial or equipment support, and the Brazilian Navy and Air Force for their logistical support. We would like to dedicate this work to the memory of Sargent Roberto Lopes dos Santos and Soldier Carlos Alberto Vieira Figueiredo, who both died in their heroic attempts to control the fire at the Comandante Ferraz Antarctic Station in February 2012.


  1. Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34(17), 3579–3587. doi: 10.1021/es990348y.CrossRefGoogle Scholar
  2. Albuquerque, T. T. de A., Andrade, M. de F., & Ynoue, R. Y. (2012). Characterization of atmospheric aerosols in the city of São Paulo, Brazil: comparisons between polluted and unpolluted periods. Environmental Monitoring and Assessment, 184(2), 969–984. doi:10.1007/s10661-011-2013-yGoogle Scholar
  3. Alvarez, C. E. De, Casagrande, B., & Soares, G. R. (2007). Resultados alcançados com a implementação do plano diretor da Estação Antártica Comandante Ferraz. In IV Encontro Nacional e II Encontro Latino-Americano sobre Edificações e Comunidades Sustentáveis (pp. 1297–1306). Mato Grosso do Sul, Brasil: UFMS.Google Scholar
  4. Annesi-Maesano, I., Moreau, D., Caillaud, D., Lavaud, F., Le Moullec, Y., Taytard, A., et al. (2007). Residential proximity fine particles related to allergic sensitisation and asthma in primary school children. Respiratory Medicine, 101(8), 1721–1729. doi: 10.1016/j.rmed.2007.02.022.CrossRefGoogle Scholar
  5. ANVISA Agência Nacional de Vigilância Sanitária. Resolução—RE no 9, de 16 de janeiro de 2003 (2003). Brasil: Diário Oficial da União.Google Scholar
  6. Buonanno, G., Stabile, L., Morawska, L., & Russi, A. (2013). Children exposure assessment to ultrafine particles and black carbon: the role of transport and cooking activities. Atmospheric Environment, 79, 53–58. doi: 10.1016/j.atmosenv.2013.06.041.CrossRefGoogle Scholar
  7. Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., & Fraile, R. (2013). Research on aerosol sources and chemical composition: past, current and emerging issues. Atmospheric Research, 120–121, 1–28. doi: 10.1016/j.atmosres.2012.09.021.CrossRefGoogle Scholar
  8. Chithra, V. S., & Shiva Nagendra, S. M. (2013). Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, 77, 579–587. doi: 10.1016/j.atmosenv.2013.05.044.CrossRefGoogle Scholar
  9. Géhin, E., Ramalho, O., & Kirchner, S. (2008). Size distribution and emission rate measurement of fine and ultrafine particle from indoor human activities. Atmospheric Environment, 42(35), 8341–8352. doi: 10.1016/j.atmosenv.2008.07.021.CrossRefGoogle Scholar
  10. Godish, T. (2003). Air quality (4th edition). Chelsea, Michigan: Lewis Publishers.Google Scholar
  11. Gupta, S., Srivastava, A., & Jain, V. K. (2008). Particle size distribution of aerosols and associated heavy metals in kitchen environments. Environmental Monitoring and Assessment, 142(1–3), 141–148. doi: 10.1007/s10661-007-9915-8.CrossRefGoogle Scholar
  12. He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38(21), 3405–3415. doi: 10.1016/j.atmosenv.2004.03.027.CrossRefGoogle Scholar
  13. Health Canada. Residential indoor air quality guidelines (2014). Canada.
  14. Huang, S. L., Yin, C. Y., & Yap, S. Y. (2010). Particle size and metals concentrations of dust from a paint manufacturing plant. Journal of Hazardous Materials, 174(1–3), 839–842. doi: 10.1016/j.jhazmat.2009.09.129.CrossRefGoogle Scholar
  15. Isaxon, C., Gudmundsson, A., Nordin, E. Z., Lönnblad, L., Dahl, A., Wieslander, G., et al. (2015). Contribution of indoor-generated particles to residential exposure. Atmospheric Environment, 106, 458–466. doi: 10.1016/j.atmosenv.2014.07.053.CrossRefGoogle Scholar
  16. Li, C. S. (1994). Elemental composition of residential indoor PM10 in the urban atmosphere of Taipei. Atmospheric Environment, 28(19), 3139–3144. doi: 10.1016/1352-2310(94)00153-C.CrossRefGoogle Scholar
  17. Loreiro, A. L., Ribeiro, A. C., Artaxo, P., & Yamasoe, M. A. (1994). Calibration of reflectometer system to measure black carbon and field intercomparation in the Amazon Basin (In 5th international conference on carbonaceous particles in the atmosphere). California, USA: Berkley.Google Scholar
  18. Mazzera, D. M., Lowenthal, D. H., Chow, J. C., Watson, J. G., & Grubǐsíc, V. (2001). PM10 measurements at McMurdo Station, Antarctica. Atmospheric Environment, 35(10), 1891–1902. doi: 10.1016/S1352-2310(00)00409-X.CrossRefGoogle Scholar
  19. McDonagh, A., & Byrne, M. A. (2014). A study of the size distribution of aerosol particles resuspended from clothing surfaces. Journal of Aerosol Science, 75, 94–103. doi: 10.1016/j.jaerosci.2014.05.007.CrossRefGoogle Scholar
  20. Mishra, V. K., Kim, K. H., Hong, S., & Lee, K. (2004). Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula. Atmospheric Environment, 38(24), 4069–4084. doi: 10.1016/j.atmosenv.2004.03.052.CrossRefGoogle Scholar
  21. Morawska, L., & Salthammer, T. (2003). Indoor environment. Weinheim: Wiley-VCH Verlag GmbH & Co.. doi: 10.1002/9783527610013.CrossRefGoogle Scholar
  22. Morawska, L., Afshari, A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Hanninen, O., Hofmann, W., Isaxon, C., Jayaratne, E. R., Pasanen, P., Salthammer, T., Waring, M., & Wierzbicka, A. (2013). Indoor aerosols: from personal exposure to risk assessment. Indoor Air, 23, 467–487.CrossRefGoogle Scholar
  23. NAAQS/EPA. National Ambient Air Quality Standards (2012). USA: U.S. Environmental Protection Agency.
  24. Pant, V., Siingh, D., & Kamra, A. K. (2011). Size distribution of atmospheric aerosols at Maitri, Antarctica. Atmospheric Environment, 45(29), 5138–5149. doi: 10.1016/j.atmosenv.2011.06.028.CrossRefGoogle Scholar
  25. Pereira, E. B., Loureiro, A. L. M., & Vasconsellos, M. B. V. (1992). Reconnaissance of elemental composition in aerosols of the Antarctic Peninsula. Atmospheric Environment. Part A. General Topics, 26(8), 1549–1550. doi: 10.1016/0960-1686(92)90139-C.CrossRefGoogle Scholar
  26. Qian, J., Peccia, J., & Ferro, A. R. (2014). Walking-induced particle resuspension in indoor environments. Atmospheric Environment, 89, 464–481. doi: 10.1016/j.atmosenv.2014.02.035.CrossRefGoogle Scholar
  27. Santos, J. M., Mavroidis, I., Reis, N. C., & Pagel, E. C. (2011). Experimental investigation of outdoor and indoor mean concentrations and concentration fluctuations of pollutants. Atmospheric Environment, 45(36), 6534–6545. doi: 10.1016/j.atmosenv.2011.08.049.CrossRefGoogle Scholar
  28. SCE—Sistema Nacional de Certificação Energética da Qualidade do Ar Interior nos Edifícios. Nota Técnica NT-SCE-02 Metodologia para auditorias periódicas de Qualidade do Ar Interior em edifícios de serviços existentes no âmbito do RSECE (2009). Portugal.
  29. Seaman, V. Y., Bennett, D. H., & Cahill, T. M. (2009). Indoor acrolein emission and decay rates resulting from domestic cooking events. Atmospheric Environment, 43, 6199–6204. doi: 10.1016/j.atmosenv.2009.08.043.CrossRefGoogle Scholar
  30. Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics from Air pollution to climate change (Second edi.). Hoboken, New Jersey: Wiley.Google Scholar
  31. Tan, C. C. L., Finney, K. N., Chen, Q., et al. (2013). Experimental investigation of indoor air pollutants in residential buildings. Indoor and Built Environment, 22, 471–489. doi: 10.1177/1420326X12441806.CrossRefGoogle Scholar
  32. Teinilä, K., Frey, A., Hillamo, R., Tülp, H. C., & Weller, R. (2014). A study of the sea-salt chemistry using size-segregated aerosol measurements at coastal Antarctic station Neumayer. Atmospheric Environment, 96, 11–19. doi: 10.1016/j.atmosenv.2014.07.025.CrossRefGoogle Scholar
  33. The European Standard. EN ISO 16000–1: indoor air—general aspects of sampling strategy (2006).Google Scholar
  34. Uhde, E., Schulz, N., Delius, W., & Markewitz, D. (2015). Impact of air fresheners on indoor air quality. Atmospheric Environment, 106(Figure 1), 492–502. doi: 10.1016/j.atmosenv.2014.11.020.CrossRefGoogle Scholar
  35. Viana, M., Díez, S., & Reche, C. (2011). Indoor and outdoor sources and infiltration processes of PM1 and black carbon in an urban environment. Atmospheric Environment, 45(35), 6359–6367. doi: 10.1016/j.atmosenv.2011.08.044.CrossRefGoogle Scholar
  36. Wallace, L., Williams, R., Rea, A., & Croghan, C. (2006). Continuous weeklong measurements of personal exposures and indoor concentrations of fine particles for 37 health-impaired North Carolina residents for up to four seasons. Atmospheric Environment, 40(3), 399–414. doi: 10.1016/j.atmosenv.2005.08.042.CrossRefGoogle Scholar
  37. Wan, M. P., Wu, C. L., Sze To, G. N., Chan, T. C., & Chao, C. Y. H. (2011). Ultrafine particles, and PM2.5 generated from cooking in homes. Atmospheric Environment, 45(34), 6141–6148. doi: 10.1016/j.atmosenv.2011.08.036.CrossRefGoogle Scholar
  38. Weinstein, J. P., Hedges, S. R., & Kimbrough, S. (2010). Characterization and aerosol mass balance of PM2.5 and PM10 collected in Conakry, Guinea during the 2004 Harmattan period. Chemosphere, 78(8), 980–988. doi: 10.1016/j.chemosphere.2009.12.022.CrossRefGoogle Scholar
  39. WHO Regional Office for Europe. (2010). WHO guidelines for indoor air quality. Nutrition Journal, 9, 454. doi: 10.1186/2041-1480-2-S2-I1.Google Scholar
  40. Wolkoff, P., & Kjærgaard, S. K. (2007). The dichotomy of relative humidity on indoor air quality. Environment International, 33(6), 850–857. doi: 10.1016/j.envint.2007.04.004.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Érica Coelho Pagel
    • 1
    • 2
  • Neyval Costa ReisJr.
    • 1
  • Cristina Engel de Alvarez
    • 2
  • Jane Méri Santos
    • 1
  • Melina Moreira Conti
    • 3
  • Ricardo Salvador Boldrini
    • 3
  • Américo Sansigolo Kerr
    • 4
  1. 1.Department of Environmental EngineeringUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.Department of Architecture and UrbanismUniversidade Federal do Espírito SantoVitóriaBrazil
  3. 3.Instituto Federal do Espírito Santo, IFESVitóriaBrazil
  4. 4.Institute of PhysicsUniversidade de São PauloSão PauloBrazil

Personalised recommendations