Assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface soil of coal stockpile sites in South Kalimantan, Indonesia

  • Andy Mizwar
  • Bambang Joko Priatmadi
  • Chairul Abdi
  • Yulinah Trihadiningrum


Concentrations, spatial distribution, and sources of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the United States Environmental Protection Agency (USEPA), were investigated in surface soils of three different coal stockpile, agricultural, and residential sites in South Kalimantan Province, Indonesia. Total PAHs concentration ranged from 4.69 to 22.67 mg kg−1-dw. PAHs concentrations in soil of coal stockpile sites were higher than those in agricultural and residential soil. A complex of petrogenic origin and pyrolytic sources was found within the study area, as suggested by the isomeric ratios of PAHs. The results of principal component analysis and multiple linear regressions (PCA/MLR) showed that three sources contributed to the PAHs in the study area, including biomass and coal combustion (48.46 %), raw coal (35.49 %), and vehicular emission (16.05 %). The high value of total benzo[a]pyrene equivalent concentration (B[a]Peq) suggests that local residents are exposed to a high carcinogenic potential.


Coal PAHs Petrogenic Pyrolytic South Kalimantan Stockpile 



The work was funded by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (Research contract No. 056/UN8.2/PL/2015).


  1. Achten, C., & Hofmann, T. (2009). Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Science of the Total Environment, 407(8), 2461–2473. doi: 10.1016/j.scitotenv.2008.12.008.CrossRefGoogle Scholar
  2. Ahrens, M. J., & Morrisey, D. J. (2005). Oceanography and marine biology: an annual review. In R. N. Gibson, R. J. A. Atkinson, & J. D. M. Gordon (Eds.), Oceanography and marine biology—an annual review) (pp. 69–122). London: Taylor & Francis.Google Scholar
  3. Antizar-Ladislao, B., Lopez-Real, J., & Beck, A. J. (2004). Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Critical Reviews in Environmental Science and Technology, 34(3), 249–289. doi: 10.1080/10643380490434119.CrossRefGoogle Scholar
  4. Bakker, M. I., Casado, B., Koerselman, J. W., Tolls, J., & Kollöffel, C. (2000). Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of the Total Environment, 263(1–3), 91–100. doi: 10.1016/S0048-9697(00)00669-0.CrossRefGoogle Scholar
  5. Edwards, N. T. (1983). Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment—a review. Journal of Environmental Quality, 12(4), 427–441. doi: 10.2134/jeq1983.00472425001200040001x.CrossRefGoogle Scholar
  6. Emsbo-Mattingly, S. D., & Stout, S. A. (2011). Semivolatile hydrocarbon residues of coal and coal tar. In G. B. Stracher, A. Prakash, & E. V. Sokol (Eds.), Coal and Peat Fires: A Global Perspective, vol 1 (Vol. 1, pp. 173–208): Elsevier.Google Scholar
  7. ESDM. (2012). Indonesia mineral and coal mining statistics 2012. Jakarta: Dirjen Minerba, Kementerian Energi dan Sumber Daya Mineral.Google Scholar
  8. Fang, M.-D., Hsieh, P.-C., Ko, F.-C., Baker, J. E., & Lee, C.-L. (2007). Sources and distribution of polycyclic aromatic hydrocarbons in the sediments of Kaoping river and submarine canyon system, Taiwan. Marine Pollution Bulletin, 54(8), 1179–1189. doi: 10.1016/j.marpolbul.2007.04.012.CrossRefGoogle Scholar
  9. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1–3), 1–15. doi: 10.1016/j.jhazmat.2009.03.137.CrossRefGoogle Scholar
  10. Kakareka, S. V., & Kukharchyk, T. I. (2003). PAH emission from the open burning of agricultural debris. Science of the Total Environment, 308(1–3), 257–261. doi: 10.1016/S0048-9697(02)00650-2.CrossRefGoogle Scholar
  11. Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science & Technology, 37(9), 1873–1881. doi: 10.1021/es0206184.CrossRefGoogle Scholar
  12. Lee, B.-K., & Vu, V. T. (2010). Sources, distribution and toxicity of polyaromatic hydrocarbons (PAHs) in particulate matter. In V. Villanyi (Ed.), Air pollution (pp. 99–122). Rijeka, Croatia: InTech.Google Scholar
  13. Li, X., Zhao, T., Zhang, C., Li, P., Li, S., & Zhao, L. (2013). Source apportionment of polycyclic aromatic hydrocarbons in agricultural soils of Yanqing County in Beijing, China. Environmental Forensics, 14(4), 324–330. doi: 10.1080/15275922.2013.843613.CrossRefGoogle Scholar
  14. Liu, M., Cheng, S. B., Ou, D. N., Hou, L. J., Gao, L., Wang, L. L., et al. (2007). Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmospheric Environment, 41(38), 8785–8795. doi: 10.1016/j.atmosenv.2007.07.059.CrossRefGoogle Scholar
  15. Liu, J., Liu, G., Zhang, J., Yin, H., & Wang, R. (2012). Occurrence and risk assessment of polycyclic aromatic hydrocarbons in soil from the Tiefa coal mine district, Liaoning, China. Journal of Environmental Monitoring, 14(10), 2634–2642. doi: 10.1039/c2em30433c.CrossRefGoogle Scholar
  16. Loick, N., Hobbs, P. J., Hale, M. D. C., & Jones, D. L. (2009). Bioremediation of poly aromatic hydrocarbon (PAH)-contaminated soil by composting. Critical Reviews in Environmental Science and Technology, 39(4), 271–332. doi: 10.1080/10643380701413682.CrossRefGoogle Scholar
  17. Luo, X.-J., Chen, S.-J., Mai, B.-X., Yang, Q.-S., Sheng, G.-Y., & Fu, J.-M. (2006). Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environmental Pollution, 139(1), 9–20. doi: 10.1016/j.envpol.2005.05.001.CrossRefGoogle Scholar
  18. Malawska, M., & Wiołkomirski, B. (2001). An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Iława Główna, Poland. Water, Air, and Soil Pollution, 127(1–4), 339–349. doi: 10.1023/A:1005236016074.CrossRefGoogle Scholar
  19. Mizwar, A., & Trihadiningrum, Y. (2015). PAH contamination in soils adjacent to a coal-transporting facility in Tapin District, South Kalimantan, Indonesia. Archives of Environmental Contamination and Toxicology, 69(1), 62–68. doi: 10.1007/s00244-015-0141-z.CrossRefGoogle Scholar
  20. Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132(1), 1–11. doi: 10.1016/j.envpol.2004.04.003.CrossRefGoogle Scholar
  21. Nas, C., & Hidartan (2010). Quality of Kalimantan coking coals, Indonesia. Paper presented at the 37th Symposium of the Geology of the Sydney Basin, University of New South Wales, Australia, May 6–7, 2010Google Scholar
  22. Pies, C., Yang, Y., & Hofmann, T. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar river. Journal of Soils and Sediments, 7(4), 216–222. doi: 10.1065/jss2007.06.233.CrossRefGoogle Scholar
  23. Ray, S., Khillare, P. S., Agarwal, T., & Shridhar, V. (2008). Assessment of PAHs in soil around the International Airport in Delhi, India. Journal of Hazardous Materials, 156(1–3), 9–16. doi: 10.1016/j.jhazmat.2007.11.099.CrossRefGoogle Scholar
  24. Ren, Y., Zhang, Q., & Chen, J. (2006). Distribution and source of polycyclic aromatic hydrocarbons (PAHs) on dust collected in Shanghai, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 76(3), 442–449. doi: 10.1007/s00128-006-0941-y.CrossRefGoogle Scholar
  25. Ribeiro, J., Silva, T., Mendonca Filho, J. G., & Flores, D. (2012). Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. Journal of Hazardous Materials, 199–200, 105–110. doi: 10.1016/j.jhazmat.2011.10.076.CrossRefGoogle Scholar
  26. Riswandi, H. (2008). Pengaruh Lingkungan Pengendapan Terhadap Kualitas Batubara Daerah Tapin Kalimantan Selatan. Jurnal Ilmiah MTG, 2(1), 24–31.Google Scholar
  27. Shi, B., Wu, Q., Ouyang, H., Liu, X., Zhang, J., & Zuo, W. (2015). Distribution and source apportionment of polycyclic aromatic hydrocarbons in the surface soil of Baise, China. Environmental Monitoring and Assessment, 187(5), 232. doi: 10.1007/s10661-015-4465-y.CrossRefGoogle Scholar
  28. Short, J. W., Irvine, G. V., Mann, D. H., Maselko, J. M., Pella, J. J., Lindeberg, M. R., et al. (2007). Slightly weathered Exxon Valdez oil persists in Gulf of Alaska beach sediments after 16 years. Environmental Science & Technology, 41(4), 1245–1250.CrossRefGoogle Scholar
  29. Stout, S. A., & Emsbo-Mattingly, S. D. (2008). Concentration and character of PAHs and other hydrocarbons in coals of varying rank—implications for environmental studies of soils and sediments containing particulate coal. Organic Geochemistry, 39(7), 801–819. doi: 10.1016/j.orggeochem.2008.04.017.CrossRefGoogle Scholar
  30. Sun, Y. Z., Fan, J. S., Qin, P., & Niu, H. Y. (2009). Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China. Environmental Geochemistry and Health, 31(1), 81–89. doi: 10.1007/s10653-008-9158-9.CrossRefGoogle Scholar
  31. Tsai, P.-J., Shih, T.-S., Chen, H.-L., Lee, W.-J., Lai, C.-H., & Liou, S.-H. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 38(2), 333–343. doi: 10.1016/j.atmosenv.2003.08.038.CrossRefGoogle Scholar
  32. USA-EPA (2015). Appendix A to 40 CFR, Part 423. (Washington, DC:USA-EPA, September 2015). Available at
  33. Wang, R., & Liu, G. (2015). Variations of concentration and composition of polycyclic aromatic hydrocarbons in coals in response to dike intrusion in the Huainan coalfield in eastern China. Organic Geochemistry, 83–84, 202–214. doi: 10.1016/j.orggeochem.2015.03.014.CrossRefGoogle Scholar
  34. Wang, Z., Li, K., Lambert, P., & Yang, C. (2007). Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products. Journal of Chromatography A, 1139(1), 14–26. doi: 10.1016/j.chroma.2006.10.085.CrossRefGoogle Scholar
  35. Wang, R., Liu, G., Chou, C.-L., Liu, J., & Zhang, J. (2010a). Environmental assessment of PAHs in soils around the Anhui Coal District, China. Archives of Environmental Contamination and Toxicology, 59(1), 62–70. doi: 10.1007/s00244-009-9440-6.CrossRefGoogle Scholar
  36. Wang, R., Liu, G., Zhang, J., Chou, C.-L., & Liu, J. (2010b). Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 Chinese and American coals and their relation to coal rank and weathering. Energy & Fuels, 24(11), 6061–6066. doi: 10.1021/ef1010622.CrossRefGoogle Scholar
  37. Wang, W., Massey Simonich, S. L., Xue, M., Zhao, J., Zhang, N., Wang, R., et al. (2010c). Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environmental Pollution, 158(5), 1245–1251. doi: 10.1016/j.envpol.2010.01.021.CrossRefGoogle Scholar
  38. Wang, R., Jiamei, Z., Jingjing, L., & Liu, G. (2013). Levels and patterns of polycyclic aromatic hydrocarbons in coal-fired power plant bottom ash and fly ash from Huainan, China. Archives of Environmental Contamination and Toxicology, 65(2), 193–202. doi: 10.1007/s00244-013-9902-8.CrossRefGoogle Scholar
  39. WHO/IPCS. (1998). Environmental Health Criteria 202. Selected non heterocyclic PAHs. Geneva: WHO.Google Scholar
  40. Xue, J., Liu, N., Chou, C.-L., Zheng, Q., et al. (2007). Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal. Energy & Fuels, 21(2), 881–890. doi: 10.1021/ef0605753.CrossRefGoogle Scholar
  41. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. doi: 10.1016/S0146-6380(02)00002-5.CrossRefGoogle Scholar
  42. Zuo, Q., Duan, Y. H., Yang, Y., Wang, X. J., & Tao, S. (2007). Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China. Environmental Pollution, 147(2), 303–310. doi: 10.1016/j.envpol.2006.05.029.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Environmental EngineeringInstitut Teknologi Sepuluh NopemberSurabayaIndonesia
  2. 2.Department of Environmental EngineeringLambung Mangkurat UniversityBanjarmasinIndonesia
  3. 3.Department of AgroecotechnologyLambung Mangkurat UniversityBanjarmasinIndonesia

Personalised recommendations