Size distribution characteristics of carbonaceous aerosol in Xishuangbanna, southwest China: a sign for biomass burning in Asia



In 2012, size-segregated aerosol samples were collected in Xishuangbanna, a forest station in southwest China. The concentrations of organic and elemental carbon (OC and EC for short) were quantified with thermal/optical carbon analyzer in the filter samples. OC and EC exhibited similar seasonal patterns, with the highest concentrations in spring, possibly due to the influence of biomass burning in south and southeast Asia. The mass size distributions of OC and EC were bimodal in all the sampling seasons, each with a dominant peak in the fine mode of 0.4–0.7 μm and a coarse peak in the size range of 2.1–4.7 μm. In fine mode, OC and EC showed smaller geometric mean diameters (GMDs) during winter. OC and EC were prone to be more concentrated in fine particles in spring and winter than in summer and autumn. Furthermore, EC was more abundant in fine particles than OC. Good correlations (R 2 = 0.75–0.82) between OC and EC indicated that they had common dominant sources of combustion such as biomass burning and fossil fuel combustion emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, more elevated OC/EC ratios being found in the winter.


Organic carbon (OC) Elemental carbon (EC) Char Soot Size distribution Geometric mean diameter (GMD) 



The work was supported by the CAS Strategic Priority Research Program Grant (XDA05100100, XDB05020200) and the National Natural Science Foundation of China (41222033).


  1. Cao, G. L., Zhang, X. Y., & Zheng, F. C. (2006). Inventory of black carbon and organic carbon emissions from china. Atmospheric Environment, 40, 6516–6527.Google Scholar
  2. Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., et al. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics, 5, 3127–3137.Google Scholar
  3. Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., Jin, Z. D., Shen, Z. X., Chen, G. C., & Kang, Y. M. (2007). Spatial and seasonal distributions of carbonaceous aerosols over China. Journal Of Geophysical Research, 112, D22S11.CrossRefGoogle Scholar
  4. Chen, L.-W. A., Moosmüller, H., Arnott, W. P., Chow, J. C., Watson, J. G., Susott, R. A., Babbitt, R. E., Wold, C. E., Lincoln, E. N., & Hao, W. M. (2007). Emissions from laboratory combustion of wildland fuels: emission factors and source profiles. Environmental Science and Technology, 41, 4317–4325.CrossRefGoogle Scholar
  5. Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmüller, H., & Fung, K. (2004a). Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environmental Science and Technology, 38, 4414–4422.CrossRefGoogle Scholar
  6. Chow, J. C., Watson, J. G., Kuhns, H., Etyemezian, V., Lowenthal, D. H., Crow, D., Kohl, S. D., Engelbrecht, J. P., & Green, M. C. (2004b). Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere, 54, 185–208.CrossRefGoogle Scholar
  7. Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. O., Robinson, N. F., Trimble, D., & Kohl, S. (2007). The improve_a temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Journal of the Air and Waste Management Association, 57, 1014–1023.CrossRefGoogle Scholar
  8. Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., & Purcell, R. G. (1993). The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in us air quality studies. Atmospheric Environment. Part A. General Topics, 27, 1185–1201.CrossRefGoogle Scholar
  9. Deng, X., Tie, X., Zhou, X., Wu, D., Zhong, L., Tan, H., Li, F., Huang, X., Bi, X., & Deng, T. (2008). Effects of southeast Asia biomass burning on aerosols and ozone concentrations over the pearl river delta (prd) region. Atmospheric Environment, 42, 8493–8501.CrossRefGoogle Scholar
  10. Ding, X., Wang, X.-M., & Zheng, M. (2011). The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: observations at a rural site in the central pearl river delta region, south China. Atmospheric Environment, 45, 1303–1311.CrossRefGoogle Scholar
  11. Fu, P., Kawamura, K., Kanaya, Y., & Wang, Z. (2010). Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over mt. Tai, central east China. Atmospheric Environment, 44, 4817–4826.CrossRefGoogle Scholar
  12. Gelencsér, A., May, B., Simpson, D., Sánchez Ochoa, A., Kasper‐Giebl, A., Puxbaum, H., et al. (2007). Source apportionment of PM2.5 organic aerosol over europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal Of Geophysical Research, 112, D23S04.Google Scholar
  13. Glaser, B., Dreyer, A., Bock, M., Fiedler, S., Mehring, M., & Heitmann, T. (2005). Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures. Environmental Science and Technology, 39, 3911–3917.CrossRefGoogle Scholar
  14. Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R. J., Granat, L., Engström, E., Praveen, P., Rao, P., Leck, C., & Rodhe, H. (2009). Brown clouds over south Asia: biomass or fossil fuel combustion? Science, 323, 495–498.CrossRefGoogle Scholar
  15. Han, Y., Cao, J., Chow, J. C., Watson, J. G., An, Z., Jin, Z., Fung, K., & Liu, S. (2007). Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-ec. Chemosphere, 69, 569–574.CrossRefGoogle Scholar
  16. Han, Y., Cao, J., Lee, S., Ho, K., & An, Z. (2010). Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an, China. Atmospheric Chemistry and Physics, 10, 595–607.CrossRefGoogle Scholar
  17. Hinds, W. C. (2012). Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: John Wiley and Sons.Google Scholar
  18. Hou, B., Zhuang, G. S., Zhang, R., Liu, T. N., Guo, Z. G., & Chen, Y. J. (2011). The implication of carbonaceous aerosol to the formation of haze: revealed from the characteristics and sources of oc/ec over a mega-city in China. Journal Of Hazardous Materials, 190, 529–536.CrossRefGoogle Scholar
  19. Huntzicker, J. J., Heyerdahl, E. K., McDow, S. R., Rau, J. A., Griest, W. H., & MacDougall, C. S. (1986). Combustion as the principal source of carbonaceous aerosol in the Ohio river valley. Journal of the Air Pollution Control Association, 36, 705–709.CrossRefGoogle Scholar
  20. Jacob, D.J., Crawford, J.H., Kleb, M.M., Connors, V.S., Bendura, R.J., Raper, J.L., Sachse, G.W., Gille, J.C., Emmons, L., & Heald, C.L. (2003). Transport and chemical evolution over the pacific (trace‐p) aircraft mission: Design, execution, and first results. Journal Of Geophysical Research, 108Google Scholar
  21. Jian, Y., & Fu, T. M. (2014). Injection heights of springtime biomass-burning plumes over peninsular southeast Asia and their impacts on long-range pollutant transport. Atmospheric Chemistry and Physics, 14, 3977–3989.CrossRefGoogle Scholar
  22. Koelmans, A. A., Jonker, M. T., Cornelissen, G., Bucheli, T. D., Van Noort, P. C., & Gustafsson, Ö. (2006). Black carbon: the reverse of its dark side. Chemosphere, 63, 365–377.CrossRefGoogle Scholar
  23. Lelieveld, J. O., Crutzen, P., Ramanathan, V., Andreae, M., Brenninkmeijer, C., Campos, T., Cass, G., Dickerson, R., Fischer, H., & De Gouw, J. (2001). The Indian ocean experiment: widespread air pollution from south and southeast Asia. Science, 291, 1031–1036.CrossRefGoogle Scholar
  24. Li, W. F., & Bai, Z. P. (2009). Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology, 7, 432–437.CrossRefGoogle Scholar
  25. Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., & Kang, K. (2012). Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at gosan abc superstation and their ratios as source signature. Atmospheric Chemistry and Physics, 12, 2007–2024.Google Scholar
  26. Ma, Y., Weber, R., Lee, Y.N., Orsini, D., Maxwell‐Meier, K., Thornton, D., Bandy, A., Clarke, A., Blake, D., & Sachse, G. (2003). Characteristics and influence of biosmoke on the fine‐particle ionic composition measured in asian outflow during the transport and chemical evolution over the pacific (trace‐p) experiment. Journal Of Geophysical Research, 108, D21, 8816.Google Scholar
  27. Madhavi Latha, K., & Badarinath, K. (2003). Black carbon aerosols over tropical urban environment—a case study. Atmospheric Research, 69, 125–133.CrossRefGoogle Scholar
  28. Nel, A. (2005). Air pollution-related illness: effects of particles. Science, 308, 804–806.CrossRefGoogle Scholar
  29. Nguyen, T. H., Brown, R. A., & Ball, W. P. (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Geochemistry, 35, 217–234.CrossRefGoogle Scholar
  30. Pope, C. A., III, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air and Waste Management Association, 56, 709–742.CrossRefGoogle Scholar
  31. Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., & Andreae, M. O. (2008). Flood or drought: how do aerosols affect precipitation? Science, 321, 1309–1313.CrossRefGoogle Scholar
  32. Schembari, C., Velchev, K., & Cavalli, F. (2010). Shipborne measurements of air pollution over the western Mediterranean: Contribution of ship emissions to surface concentrations of sulphate and black carbon aerosol, The Internationa l Aerosol Conference. Finland: Helsinki.Google Scholar
  33. Simoneit, B. R., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge, W. F., & Didyk, B. M. (2004). Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environmental Science and Technology, 38, 5939–5949.CrossRefGoogle Scholar
  34. Stocker, T. F., D. Qin, G.-K. Plattner, L. V. Alexander, S. K. Allen, N. L. Bindoff, F.-M. et al. (2013). Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. F. Stockeret al. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  35. Stone, E., Schauer, J., Quraishi, T. A., & Mahmood, A. (2010). Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric Environment, 44, 1062–1070.CrossRefGoogle Scholar
  36. Streets, D., Yarber, K., Woo, J.H.&Carmichael, G. (2003). Biomass burning in asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17Google Scholar
  37. Turpin, B. J., Huntzicker, J. J., Larson, S. M., & Cass, G. R. (1991). Los Angeles summer midday particulate carbon: primary and secondary aerosol. Environmental Science and Technology, 25, 1788–1793.CrossRefGoogle Scholar
  38. Wu, D., Bi, X., Deng, X., Li, F., Tan, H., Liao, G., & Huang, J. (2007). Effect of atmospheric haze on the deterioration of visibility over the pearl river delta. Acta Meteorological Sinica (english edition), 21, 215.Google Scholar
  39. Wu, J., Mei, J. W., Mei, C. X., Guo, W. W., Chang, G. S., QI, X. Y., & Nian, L. H. (2004). Simulation of effects to tropospheric ozone over south east Asia and south china from biomass burning. Environmental Science, 25, 1–6.Google Scholar
  40. Yu, H., Wu, C., Wu, D., & Yu, J. (2010). Size distributions of elemental carbon and its contribution to light extinction in urban and rural locations in the pearl river delta region, China. Atmospheric Chemistry and Physics, 10, 5107–5119.CrossRefGoogle Scholar
  41. Yuan, Z., Yu, J., Lau, A., Louie, P., & Fung, J. (2006). Application of positive matrix factorization in estimating aerosol secondary organic carbon in Hong Kong and its relationship with secondary sulfate. Atmospheric Chemistry and Physics, 6, 25–34.CrossRefGoogle Scholar
  42. Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., & Gong, S. L. (2008). Carbonaceous aerosol composition over various regions of china during 2006. Journal Of Geophysical Research, 113, D14111.CrossRefGoogle Scholar
  43. Zhu, C. S., Cao, J. J., Tsai, C. J., Shen, Z. X., Han, Y. M., Liu, S. X., & Zhao, Z. Z. (2014). Comparison and implications of PM2.5 carbon fractions in different environments. Science Of The Total Environment, 466, 203–209.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations