Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

  • Ryan A. Blaustein
  • Daniel R. Shelton
  • Jo Ann S. Van Kessel
  • Jeffrey S. Karns
  • Matthew D. Stocker
  • Yakov A. Pachepsky


The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.


Antibiotic resistance Indicator bacteria Irrigation water Biofilm Pipes 

Supplementary material

10661_2015_5067_MOESM1_ESM.docx (12 kb)
ESM 1 Table S-1. Probabilities that the multiple-drug resistance histograms for different bacterial groups (ref. Fig. 5) were the same on each irrigation event date. (DOCX 11 kb)


  1. Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251–259. doi: 10.1038/nrmicro2312.CrossRefGoogle Scholar
  2. Armstrong, J. L., Shigeno, D. S., Calomiris, J. J., & Seidler, R. J. (1981). Antibiotic-resistant bacteria in drinking water. Applied and Environmental Microbiology, 42(2), 277–283.Google Scholar
  3. Baquero, F., Martínez, J., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. doi: 10.1016/j.copbio.2008.05.006.CrossRefGoogle Scholar
  4. Barkay, T., Kroer, N., Rasmussen, L. D., & Sorenson, S. (1995). Conjugal gene transfer at natural population densities in a microcosmos simulating an estuarine environment. FEMS Microbiology Ecology, 16, 43–54.CrossRefGoogle Scholar
  5. Barker, J., & Brown, M. R. W. (1994). Trojan Horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology, 140(6), 1253–1259.CrossRefGoogle Scholar
  6. Blaustein, R. A., Pachepsky, Y. A., Hill, R. L., Shelton, D. R., & Whelan, G. (2013). Escherichia coli survival in waters: temperature dependence. Water Research, 47, 569–578.CrossRefGoogle Scholar
  7. Brettar, I., & Hofle, M. G. (1992). Influence of ecosystematic factors on survival of Escherichia coli after large-scale release into lake water mesocosms. Applied and Environmental Microbiology, 58(7), 2201–2210.Google Scholar
  8. Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137–1144.CrossRefGoogle Scholar
  9. Czekalski, N., Berthold, T., Caucci, S., Egli, A., & Bürgmann, H. (2012). Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology, 3, 106. doi: 10.3389/fmicb.2012.00106.CrossRefGoogle Scholar
  10. De Lancy Pulcini, E. (2001). Bacterial biofilms: a review of current research. Néphrologie, 22(8), 439–441.Google Scholar
  11. Devarajan, N., Laffite, A., Graham, N. D., Meijer, M., Prabakar, K., Mubedi, J. I., Elongo, V., Mpiana, P. T., Ibelings, B. W., Wildi, W., & Pote, J. (2015). Accumulation of clinically relevant antibiotic resistant genes, bacterial load, and metals from freshwater lake sediments in Central Europe. Environmental Science and Technology, 49, 6528–6537.CrossRefGoogle Scholar
  12. Esioubu, N., Armenta, L., & Ike, J. (2002). Antibiotic resistance in soil and water environments. International Journal of Environmental Health Research, 12, 133–144.CrossRefGoogle Scholar
  13. Flint, K. P. (1987). The long-term survival of Escherichia coli in river water. Journal of Applied Bacteriology, 63(3), 261–270.CrossRefGoogle Scholar
  14. Garcia-Armizen, T., & Servais, P. (2004). Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization. Journal of Microbiological Methods, 58, 269–279.CrossRefGoogle Scholar
  15. Gerba, C. P. (2009). The role of water and water testing in produce safety. In X. Fan, B. A. Niemira, C. J. Doona, F. E. Feeherty, & R. B. Gravani (Eds.), Microbial safety of fresh produce (pp. 129–142). New York: Wiley and Sons.CrossRefGoogle Scholar
  16. Gomez-Alvarez, V., Revetta, R. P., & Santo Domingo, J. W. (2012). Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiology, 12(1), 122. doi: 10.1186/1471-2180-12-122.CrossRefGoogle Scholar
  17. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics soft-ware package for education and data analysis. Palaeontologia Electronica, 4(1), 9. Scholar
  18. Harmel, R. D., Karthikeyan, R., Gentry, T., & Srinivasan, R. (2010). Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow. Transactions of the ASABE, 53(6), 1833–1841.CrossRefGoogle Scholar
  19. Hausner, M., & Wuertz, S. (1999). High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Applied and Environmental Microbiology, 65(8), 3710–3713.Google Scholar
  20. Junco, M. T. T., Martín, M. G., Toledo, M. L. P., Gómez, P. L., & Barrasa, J. L. M. (2001). Identification and antibiotic resistance of faecal enterococci isolated from water samples. International Journal of Hygeine and Environmental Health, 203, 363–368.CrossRefGoogle Scholar
  21. Lebkowska, M. (2009). Antibiotic resistant bacteria in drinking water. Ochrona Srodowiska, 31(2), 11–15.Google Scholar
  22. Li, X., Watanabe, N., Xiao, C., Harter, T., McCowan, B., Liu, Y., & Atwill, E.R. (2013). Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California. Environmental Monit Assess. DOI  10.1007/s10661-013-3454-2.
  23. Martinez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(11), 365–367.CrossRefGoogle Scholar
  24. Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution (Barking, Essex: 1987), 157(11), 2893–902.Google Scholar
  25. McCambridge, J., & McMeekin, T. A. (1980). Relative effects of bacterial and protozoan predators on survival of Escherichia coli in estuarine water samples. Applied and Environmental Microbiology, 40(5), 907–911.Google Scholar
  26. Na, S. H., Miyanaga, K., Unno, H., & Tanji, Y. (2006). The survival response of Escherichia coli K12 in a natural environment. Applied Microbiology and Biotechnology, 72(2), 386–392.CrossRefGoogle Scholar
  27. Pachepsky, Y., Shelton, D. R., Mclain, J. E. T., Patel, J., & Mandrell, R. E. (2011). Irrigation waters as a source of pathogenic microorganisms in produce: a review. Advances in agronomy (1st ed., Vol. 113, pp. 73-137). Elsevier Inc. doi: 10.1016/B978-0-12-386473-4.00007-5
  28. Pachepsky, Y., Morrow, J., Guber, A., Shelton, D., Rowland, R., & Davies, G. (2012). Effect of biofilm in irrigation pipes on microbial quality of irrigation water. Letters in Applied Microbiology, 54(3), 217–224. doi: 10.1111/j.1472-765X.2011.03192.x.CrossRefGoogle Scholar
  29. Pachepsky, Y. A., Blaustein, R. A., Whelan, G., & Shelton, D. R. (2014). Comparing temperature effects on Escherichia coli, Salmonella, and Enterococcus survival in surface waters. Letters in Applied Microbiology, 59, 278–283.CrossRefGoogle Scholar
  30. Pallecchi, L., Bartoloni, A., Paradisi, F., & Rossolini, G. M. (2008). Antibiotic resistance in the absence of antimicrobial use: mechanisms and implications. Expert Review of Anti-Infective Therapy, 6, 725–732.CrossRefGoogle Scholar
  31. Rice, E. W., Messer, J. W., Johnson, C. H., & Reasoner, D. J. (1995). Occurrence of high-level aminoglycoside resistance in environmental isolates of enterococci. Applied and Environmental Microbiology, 61(1), 374–376.Google Scholar
  32. Sadovski, A. Y., Fattal, B., Goldberg, D., Katzenelson, E., & Shuval, H. I. (1978). High levels of microbial contamination of vegetables irrigated with wastewater by the drip method. Applied and Environmental Microbiology, 36, 824–830.Google Scholar
  33. Schwartz, T., Kohnen, W., Jansen, B., & Obst, U. (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43, 325–335.CrossRefGoogle Scholar
  34. Shelton, D. R., Kiefer, L. A., Pachepsky, Y. A., Blaustein, R. A., & Martinez, G. (2012). Coliform retention and release in biofilms formed on new and weathered irrigation pipes. Irrigation Science, 31(5), 971–981. doi: 10.1007/s00271-012-0373-x.CrossRefGoogle Scholar
  35. Shelton, D. R., Kiefer, L. A., Pachepsky, Y. A., Martinez, G., McCarty, G. W., & Dao, T. H. (2013). Comparison of microbial quality of irrigation water delivered in aluminum and PVC pipes. Agricultural Water Management, 129, 145–151. doi: 10.1016/j.agwat.2013.07.021.CrossRefGoogle Scholar
  36. Smith, D. L., Dushoff, J., & Morris, J. G. (2005). Agricultural antibiotics and human health. PLoS Medicine, 2(8), e232.CrossRefGoogle Scholar
  37. Stanley, N. R., & Lazazzera, B. A. (2004). Environmental signals and regulatory pathways that influence biofilm formation. Molecular Microbiology, 52(4), 917–924.CrossRefGoogle Scholar
  38. Thevenon, F., Adatte, T., Wildi, W., & Pote, J. (2012). Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland). Chemosphere, 86(5), 468–476.CrossRefGoogle Scholar
  39. USDA-ARS. (2014). NARMS—National Antimicrobial Resistance Monitoring System Animal Isolates. <>.
  40. Wellington, E. M. H., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollins, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infectious Diseases, 13(2), 155–165. doi: 10.1016/S1473-3099(12)70317-1.CrossRefGoogle Scholar
  41. Williamson, C. E., Grad, G., De Lange, H. J., Gilroy, S., & Karapelou, D. M. (2002). Temperature-dependent ultraviolet radiation responses in zooplankton: implications of climate change. Limnology and Oceanography, 47(6), 1844–1848.CrossRefGoogle Scholar
  42. Wimpenny, J. (1996). Ecological determinants of biofilm formation. Biofouling, 10, 43–63.CrossRefGoogle Scholar
  43. Yomoda, S., Okubo, T., Takahashi, A., Murakami, M., & Iyobe, S. (2003). Presence of Pseudomonas putida strains harboring plasmids bearing the Metallo-β-Lactamase gene bla IMP in a hospital in Japan. Journal of Clinical Microbiology, 41(9), 4246–4251. doi: 10.1128/JCM.41.9.4246.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2015

Authors and Affiliations

  • Ryan A. Blaustein
    • 1
    • 2
    • 3
  • Daniel R. Shelton
    • 1
  • Jo Ann S. Van Kessel
    • 1
  • Jeffrey S. Karns
    • 1
  • Matthew D. Stocker
    • 1
  • Yakov A. Pachepsky
    • 1
  1. 1.USDA-ARS Environmental Microbial and Food Safety LaboratoryBeltsville Agricultural Research CenterBeltsvilleUSA
  2. 2.Department of Environmental Science and TechnologyUniversity of MarylandCollege ParkUSA
  3. 3.Soil and Water Science DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations