Advertisement

The impact of multiple anthropogenic contaminants on the terrestrial environment of the Plitvice Lakes National Park, Croatia

  • Snježana Herceg Romanić
  • Zorana Kljaković-Gašpić
  • Tomislav Bituh
  • Silva Žužul
  • Marija Dvoršćak
  • Sanja Fingler
  • Jasna Jurasović
  • Darija Klinčić
  • Gordana Marović
  • Tatjana Orct
  • Jasmina Rinkovec
  • Sanja Stipičević
Article

Abstract

The anthropogenic impact on the terrestrial environment of the Plitvice Lakes National Park (PLNP) was investigated through the analysis of three groups of major contaminants (persistent organochlorine pollutants including 15 organochlorine pesticides (OCPs) and 17 polychlorinated biphenyls (PCBs), trace elements/heavy metals (6 major and 23 trace constituents), and anthropogenic radionuclides (90Sr, 134Cs, and 137Cs)) in three terrestrial compartments (soil, air, and bioindicators of air contamination) during 2011–2013. The correlation coefficients of element mass fractions with soil properties indicated that total Fe and Al minerals, soil organic matter (OM), and organic carbon (OC) content affected the mass fractions of most trace elements in the topsoils. The annual and spatial distributions of heavy metals in total deposited matter (TDM) indicated that the metals came from natural sources and long-range transfer of particulate matter. The PCB and OCP levels found in soil and conifer needles corresponded to global environmental pollution levels by persistent organic pollutants and represented the lower end of the mass fraction ranges reported in the relevant literature. Analyses of anthropogenic radionuclides in bioindicators (conifer needles, lichens, and mosses) showed low but measurable activity concentrations of 134Cs (for the first time after the Chernobyl accident), which indicated origin from the March 2011 Fukushima Nuclear Power Plant accident. Our overall results indicated that human activity inside or near the PLNP had no significant impact either on contaminant spread by air or on their content in topsoils.

Keywords

Metal(oid)s Polychlorinated biphenyls Organochlorine pesticides Radionuclides Soil Total deposited matter 

Notes

Acknowledgments

The project “Monitoring of organic and inorganic pollutants in the environment of the Plitvice Lakes National Park” was financed by the Public Institution “Plitvice Lakes” (contract no. 01-100-243/10, Zagreb, and contract no. 14983/10, Plitvice Lakes). The authors would like to thank Jasminka Senčar for the gamma-ray spectrometry analyses; Ljerka Petroci for the Sr determinations; Mladen Komesar, Mak Avdić, Vjeran Dasović, and Ranka Godec for the field sampling; and Makso Herman for the language editing. Special thanks to Dr. Vlasta Drevenkar for her great efforts in improving the quality of the paper.

Supplementary material

10661_2015_5030_MOESM1_ESM.pdf (342 kb)
ESM 1 (PDF 341 kb)

References

  1. Alloway, B. J. (2005). Bioavailability of elements in soils. In O. Selinus & B. J. Alloway (Eds.), Essentials of medical geology: impacts of the natural environment on public health (pp. 347–372). Burlington: Elsevier Academic Press.Google Scholar
  2. Andjelov, M. (1994). Results of radiometric and geochemical measurement for the natural radioactivity map of Slovenia. Geologija, 36(1), 223–248.CrossRefGoogle Scholar
  3. Avila, A., & Rodrigo, A. (2004). Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmospheric Environment, 38(2), 171–180.CrossRefGoogle Scholar
  4. Azimi, S., Ludwig, A., Thévenot, D. R., & Colin, J.-L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas. Science of the Total Environment, 308(1–3), 247–256.CrossRefGoogle Scholar
  5. Carlon, C. (Ed.). (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. Ispra: European Commission, Joint Research Centre.Google Scholar
  6. Castillo, S., de la Rosa, J. D., Sánchez de la Campa, A. M., González-Castanedo, Y., & Fernández-Camacho, R. (2013). Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain. Atmospheric Environment, 77, 509–517.CrossRefGoogle Scholar
  7. CBS (Croatian Bureau of Statistics). (2011). Census of population, households and dwellings 2011, First Results by Settlements. Statistical Reports 1441/2011, 212 p. http://www.dzs.hr/Hrv_Eng/publication/2011/SI-1441.pdf.
  8. Čačković, M., Kalinić, N., Vadjić, V., & Pehnec, G. (2009). Heavy metals and acidic components in total deposited matter in Sibenik and National Park Kornati, Croatia. Archives of Environmental Contamination and Toxicology, 56(1), 12–20.Google Scholar
  9. Dautović, J., Fiket, Ž., Barešić, J., Ahel, M., & Mikac, N. (2013). Sources, distribution and behavior of major and trace elements in a complex karst lake system. Aquatic Geochemistry, 20(1), 19–38.CrossRefGoogle Scholar
  10. Dvoršćak, M. (2015). Trace analysis of persistent organochlorine compounds in soil and atmospheric particles. PhD Thesis, Faculty of Science, University of Zagreb. pp. 54–65 (in Croatian).Google Scholar
  11. Ene, A., Bogdevich, O., & Sion, A. (2012). Levels and distribution of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. The Science of the Total Environment, 439, 76–86.CrossRefGoogle Scholar
  12. Franić, Z., Lokobauer, N., & Marović, G. (2004). Radiostrontium activity concentrations in milk in the Republic of Croatia for 1961–2001 and dose assessment. Health Physics, 87(2), 160–165.CrossRefGoogle Scholar
  13. Fuoco, R., Colombini, M. P., & Samcova, E. (1993). Individual determination of ortho and non-ortho substituted polychlorobiphenyls (PCBs) in sediments by high performance liquid chromatographic pre-separation and gas chromatography/ECD detection. Chromatographia, 36(1), 65–70.CrossRefGoogle Scholar
  14. Halamić, J., & Miko, S. (Eds.) (2009). Geochemical atlas of the Republic of Croatia. Zagreb: Croatian Geological Survey, 87 p. http://www.gtk.fi/publ/foregsatlas/.
  15. Halamić, J., Peh, Z., Miko, S., Galović, L., & Šorša, A. (2012). Geochemical Atlas of Croatia: environmental implications and geodynamical thread. Journal of Geochemical Exploration, 115, 36–46.CrossRefGoogle Scholar
  16. HASL-300. (1997). EML procedures manual, 28th edition.Google Scholar
  17. Herceg Romanić, S., & Krauthacker, B. (2004). Distribution of organochlorine compounds in pine needles collected at urban sites in Croatia. Bulletin of Environmental Contamination and Toxicology, 72(6), 1203–1210.CrossRefGoogle Scholar
  18. Herceg Romanić, S., & Krauthacker, B. (2006). Distribution of persistent organochlorine compounds in one-year and two-year-old pine needles. Bulletin of Environmental Contamination and Toxicology, 77(1), 143–148.CrossRefGoogle Scholar
  19. Herceg Romanić, S., & Krauthacker, B. (2008). Distribution of organochlorine compounds in pine needles collected on Croatian mountains. Fresenius Environmental Bulletin, 17(7 A), 803–809.Google Scholar
  20. Holoubek, I., Dusek, L., Sánka, M., Hofman, J., Cupr, P., Jarkovský, J., et al. (2009). Soil burdens of persistent organic pollutants-their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environmental Pollution, 157(12), 3207–3217.CrossRefGoogle Scholar
  21. Horvatinčić, N., Sironić, A., Barešić, J., Bronić, I. K., Nikolov, J., Todorović, N., et al. (2014). Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia. Central European Journal of Physics, 12(10), 707–713.Google Scholar
  22. Hovmand, M. F., & Kystol, J. (2013). Atmospheric element deposition in southern Scandinavia. Atmospheric Environment, 77, 482–489.CrossRefGoogle Scholar
  23. HRN EN 15841. (2009). Ambient air quality—standard method for determination of arsenic, cadmium, lead and nickel in atmospheric deposition.Google Scholar
  24. IAEA. (1989). Measurement of radionuclides in food and the environment. Technical Report No. 295, IAEA, Vienna.Google Scholar
  25. IAHKC. (2013). International Association of Hydrogeologists Karst Commission official website. http://karst.iah.org/default.html. Accessed 20 June 2014.
  26. Marović, G., Franić, Z., & Senčar, J. (2008a). Mosses in radioactivity monitoring. In D. Barišić et al. (Eds.), Proceedings of the seventh symposium of the Croatian radiation protection association (pp. 230–235) (in Croatian). Opatia, Croatia.Google Scholar
  27. Marović, G., Franić, Z., Senčar, J., Bituh, T., & Vugrinec, O. (2008b). Mosses and some mushroom species as bioindicators of radiocaesium contamination and risk assessment. Collegium Antropologicum, 32(SUPPL. 2), 109–114.Google Scholar
  28. Marović, G., Franić, Z., Avdić, M., Skoko, B., & Senčar, J. (2013). Radioactivity in mosses—contamination after Fukushima. In Proceedings of the ninth symposium of the Croatian radiation protection association (pp. 462–467) (in Croatian). Krk, Croatia.Google Scholar
  29. Mikac, I., Fiket, Z., Terzić, S., Barešić, J., Mikac, N., & Ahel, M. (2011). Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes. Chemosphere, 84(8), 1140–1149.CrossRefGoogle Scholar
  30. Offenthaler, I., Bassan, R., Belis, C., Jakobi, G., Kirchner, M., Kräuchi, N., et al. (2009). PCDD/F and PCB in spruce forests of the Alps. Environmental Pollution, 157(12), 3280–3289.CrossRefGoogle Scholar
  31. OG (Official Gazette). (2012). Regulation on the limit values of pollutants in air. Official Gazette No. 117/12, 2521 (in Croatian). http://narodne-novine.nn.hr/.
  32. OG (Official Gazette). (2014). Regulation on the protection of agricultural land from pollution. Official Gazette No. 9/14, 167 (in Croatian). http://narodne-novine.nn.hr/.
  33. Petrinec, B., Franić, Z., Bituh, T., & Babić, D. (2011). Quality assurance in gamma-ray spectrometry of seabed sediments. Arhiv za Higijenu Rada i Toksikologiju, 62(1), 17–23.CrossRefGoogle Scholar
  34. PLNP. (2015). Plitvice Lakes National Park official website. http://www.np-plitvicka-jezera.hr/en/natural-and-cultural-heritage/tufa/. Accessed 1 May 2015.
  35. Rossini, P., Guerzoni, S., Molinaroli, E., Rampazzo, G., De Lazzari, A., & Zancanaro, A. (2005). Atmospheric bulk deposition to the lagoon of Venice Part I. Fluxes of metals, nutrients and organic contaminants. Environment International, 31(7), 959–974.CrossRefGoogle Scholar
  36. Růžičková, P., Klánová, J., Čupr, P., Lammel, G., & Holoubek, I. (2008). An assessment of air−soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environmental Science & Technology, 42(1), 179–185.CrossRefGoogle Scholar
  37. Salminen, R. (Eds.) (2005). Geochemical atlas of Europe. Part 1. Bacground information, methodology and maps. The Association of the Geological Surveys of the European Union (EuroGeoSurveys)/the Geological Survey of Finland. ISBN: 951-690-913-2 (electronic version). http://weppi.gtk.fi/publ/foregsatlas/index.php. Accessed 15 June 2014.
  38. Shegunova, P., Klánová, J., & Holoubek, I. (2007). Residues of organochlorinated pesticides in soils from the Czech Republic. Environmental Pollution, 146(1), 257–261.CrossRefGoogle Scholar
  39. Srdoč, D. (1992). Anthropogenic influence on the 14C activity and other constituents of recent lake sediments: a case study. Radiocarbon, 34(3), 585–592.Google Scholar
  40. Sremac, J., Božičević, S., & Marković, I. (2012). Plitvice Lakes National Park (Central Croatia)—more than 50 years of continuous monitoring of natural and human influence. European Geologyst, 34, 12–16.Google Scholar
  41. Šikić, Z. (Ed.) (2007). Plitvice Lakes National Park Management Plan. Zagreb: Ministry of Culture of the Republic of Croatia, 168 p. http://www.np-plitvicka-jezera.hr/files/file/NpPlitvice-management-plan.pdf.
  42. Turgut, C., Atatanir, L., Mazmanci, B., Mazmanci, M. A., Henkelmann, B., & Schramm, K.-W. (2012). The occurrence and environmental effect of persistent organic pollutants (POPs) in Taurus Mountains soils. Environmental Science and Pollution Research, 19(2), 325–334.CrossRefGoogle Scholar
  43. Vukosav, P., Mlakar, M., Cukrov, N., Kwokal, Z., Pižeta, I., Pavlus, N., et al. (2014). Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia). Environmental Science and Pollution Research, 21(5), 3826–3839.CrossRefGoogle Scholar
  44. Weiss, P., Lorbeer, G., & Scharf, S. (2000). Regional aspects and statistical characterisation of the load with semivolatile organic compounds at remote Austrian forest sites. Chemosphere, 40(9–11), 1159–1171.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Snježana Herceg Romanić
    • 1
  • Zorana Kljaković-Gašpić
    • 2
  • Tomislav Bituh
    • 3
  • Silva Žužul
    • 4
  • Marija Dvoršćak
    • 1
  • Sanja Fingler
    • 1
  • Jasna Jurasović
    • 2
  • Darija Klinčić
    • 1
  • Gordana Marović
    • 3
  • Tatjana Orct
    • 2
  • Jasmina Rinkovec
    • 4
  • Sanja Stipičević
    • 1
  1. 1.Biochemistry and Organic Analytical Chemistry UnitInstitute for Medical Research and Occupational HealthZagrebCroatia
  2. 2.Analytical Toxicology and Mineral Metabolism UnitInstitute for Medical Research and Occupational HealthZagrebCroatia
  3. 3.Radiation Protection UnitInstitute for Medical Research and Occupational HealthZagrebCroatia
  4. 4.Environmental Hygiene UnitInstitute for Medical Research and Occupational HealthZagrebCroatia

Personalised recommendations