Advertisement

Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile

  • Hernán Gaete Olivares
  • Natalia Moyano Lagos
  • Carlos Jara Gutierrez
  • Romina Carrasco Kittelsen
  • Gabriela Lobos Valenzuela
  • María Eliana Hidalgo Lillo
Article

Abstract

The aim of this study was to evaluate the effect on seaweeds Scytosiphon lomentaria and Ulva rigida of coastal waters of sites with mining activity, using oxidative stress biomarkers and heavy metal determination both in water and in tissue. The greatest bioaccumulation factors in S. lomentaria and U. rigida were founded for iron and arsenic in Quintay. Bioaccumulation factor in S. lomentaria in descending order was Fe> Cu> Zn> Cd> Cr> As> Mo and in U. rigida, in descending order, was Fe> Cu> Cd> Zn> Cr> Mo> As. Both species had higher antioxidant activity levels in areas with high mining activities. The concentration of metals in waters such as copper and arsenic in S. lomentaria, and iron, arsenic, and cadmium in U. rigida were related with oxidative stress biomarkers measured in both species. The use of both species is proposed to monitor the bioavailability and oxidative damage in coastal areas with mining activity. This work will generate a significant knowledge about the impact of mining wastes on macroalgal community in the area of north-central Chile.

Keywords

Biomonitor Metals ROS Oxidative stress biomarkers 

Notes

Acknowledgments

This work was supported by the Project No. 28/2009 of the Dirección de Investigación of the Universidad de Valparaíso. Valentina Gaete Paredes for collaboration in the statistical analysis

References

  1. Aebi, H. (1984). Catalase in vitro. Methods in Enzimology., 105, 121–126.CrossRefGoogle Scholar
  2. Astorga-España, M., Calisto-Ulloa, N., & Guerrero, S. (2008). Baseline concentrations of trace metals in macroalgae from the strait of Magellan Chile. Bulletin of Environmental Contamination and Toxicology, 80, 97–101.CrossRefGoogle Scholar
  3. Boese, B., & Lee, H. (1992). Synthesis of methods to predict bioaccumulation of sediment pollutants. Environmental Protection Agency. Environmental Research Laboratory. Narragansett RI: ERL-N No. N232. U.S.Google Scholar
  4. CADE-IDEPE. (2004a). Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Cuenca del río Copiapó (p. 122). Valparaíso: Dirección General de Aguas (DGA).Google Scholar
  5. CADE-IDEPE. (2004b). 2004. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad. Cuenca del río Huasco (p. 111). Valparaíso: Dirección General de Aguas (DGA).Google Scholar
  6. Camus, C., Meynard, A., Faugeron, S., Kogame, K., & Correa, J. A. (2005). Differential life history phase expression in two coexisting species of Scytosiphon (Phaeophyceae) in northern Chile. Journal of Phycology, 41, 931–941.CrossRefGoogle Scholar
  7. Cañete, J., Leighton, G., & Soto, E. (2000). Proposición de un índice de vigilancia ambiental basado en la variabilidad temporal de la abundancia de dos especies de poliquetos bentónicos de bahía Quintero, Chile. Revista de biología marina y oceanografía, 35(2), 185–194.CrossRefGoogle Scholar
  8. Cárcamo, P., Córtes, M., Ortega, L., Squeo, F., & Gaymer, C. (2011). Crónica de un conflicto anunciado: Tres centrales termoeléctricas acarbón en un hotspot de biodiversidad de importancia mundial. Revista Chilena de Historia Natural, 84, 171–180.CrossRefGoogle Scholar
  9. Castilla, J. (1983). Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Marine Pollution Bulletin, 14, 459–464.CrossRefGoogle Scholar
  10. Carvalho-Neta, R., & Abreu-Silva, A. (2010). Sciades herzbergii oxidative stress biomarkers: an in situ study of an estuarine ecosystem (São Marcos’ Bay, Maranhão, Brazil). Brazilian Journal of Oceanography, 58; N° special 4, 11–17.CrossRefGoogle Scholar
  11. Castro, C., & Pozo, V. (1995). Determinación de unidades con deterioro ambiental en el entorno de la Bahía de Quintero (320 38'y 320 48'latitud sur y los 710 28'y 710 40'longitud oeste). Revista de Geografía Norte Grande, 22, 21–26.Google Scholar
  12. CONAMA, 2004. Guía conama para el establecimiento de las normas Secundarias de calidad ambiental para aguas continentales superficiales y marinas. Ministerio del medio ambiente de ChileGoogle Scholar
  13. Contreras, L., Moenne, A., & Correa, J. (2005). Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper enriched coastal environments. Journal of Phycology, 41, 1184–1195.CrossRefGoogle Scholar
  14. Contreras-Porcia, L., Callejas, S., Thomas, D., Sordet, C., Pohnert, G., Contreras, A., Lafuente, A., Flores-Molina, M. R., & Correa, J. A. (2012). Seaweeds early development: detrimental effects of desiccation and attenuation by algal extracts. Planta, 235, 337–348.CrossRefGoogle Scholar
  15. Dou, Y., Li, J., Zhao, J., Hu, B., & Yang, S. (2013). Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine Pollution Bulletin, 67, 137–145.CrossRefGoogle Scholar
  16. Etcheverry, H. (1958). “Bibliografía de las algas chilenas”. Capítulo V. Revista de Biología Marina, 7(1, 2, 3), 163–182.Google Scholar
  17. Esterbauer, K., Cheeseman, H., Dianzani, M., Poli, G., & Slater, T. (1982). Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochemical Journal, 208(1), 129–140.CrossRefGoogle Scholar
  18. Fridovich, I. (1989). Superoxide dismutase: an adaptation to a paramagnetic gas. Journal of Biological Chemistry, 264(14), 7761–7764.Google Scholar
  19. Gaete, H., Hidalgo, M., Neaman, A., & Avila, G. (2010). Evaluación de la toxicidad de cobre en suelos a través de biomarcadores de estrés oxidativo en Eisenia foetida. Quimica Nova, 33(3), 566–570.CrossRefGoogle Scholar
  20. Ginocchio, R. (2000). Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile. Chemosphere, 41, 15–23.CrossRefGoogle Scholar
  21. Halliwell, B. (2006). Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.CrossRefGoogle Scholar
  22. Halliwell, B., & Gutteridge, J. (1995). The definition and measurement of antioxidants in biological systems. Radical Biology Medicine, 18, 125–126.CrossRefGoogle Scholar
  23. Hamdy, A. (2000). Biosorption of heavy metals by marine algae. Current Microbiology, 41, 232–238.CrossRefGoogle Scholar
  24. Hidalgo, M., Fernández, E., Cabello, A., Rivas, C., Fontecilla, F., Morales, L., Aguirre, A., & Cabrera, E. (2006). Evaluación de la respuesta antioxidante en Chiton granosus Frembly, 1928 (Mollusca: Polyplacophora) a contaminantes oxidativos. Revista de Biología Marina y Oceanografía, 41(2), 155–165.CrossRefGoogle Scholar
  25. Hoffmann, A., & Santelices, B. (1997). Flora Marina de Chile Central. Ediciones Universidad Católica de Chile. Chile: Santiago. 434 pp.Google Scholar
  26. Jara, C., Gaete, H., Lobos, G., & Hidalgo, M. (2014). Oxidative stress in the mollusk Echinolittorina peruviana (Gasteropoda: Littorinidae, Lamarck, 1822) and trace metals in coastal sectors with mining activity. Ecotoxicology, 23, 1099–1108.CrossRefGoogle Scholar
  27. Karavoltsos, S., Sakellari, A., Strmecki, S. M., Plavšic, E., Ioannou, V., Roussis, M., Dassenakis, M., & Scoullos, M. (2013). Copper complexing properties of exudates and metabolites of macroalgae from the Aegean Sea. Chemosphere, 91, 1590–1595.CrossRefGoogle Scholar
  28. Lee, M., Correa, J., & Zhang, H. (2002). Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into coastal waters of the Atacama region of northern Chile. Marine Pollution Bulletin, 44, 956–961.CrossRefGoogle Scholar
  29. Lowry, O., Rosebrough, N., & Farr, A. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.Google Scholar
  30. Maeda, S., & Sakaguchi, T. (1990). Accumulation and detoxification of toxic metal elements by algae. In I. Akatsuka (Ed.), Introduction to applied phycology (pp. 109–136). The Hague: SPB Academic Publishing.Google Scholar
  31. Medina, M., Andrade, S., Faugeron, S., Lagos, N., Mella, D., & Correa, J. A. (2005). Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Marine Pollution Bulletin, 50, 396–409.CrossRefGoogle Scholar
  32. Mehta, S., & Gaur, J. (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Critical Reviews in Biotechnology, 25, 113–152.CrossRefGoogle Scholar
  33. Monserrat, J., Geracitano, L., & Bianchini, A. (2003). Current and future perspective using biomarkers to assess pollution in aquatic ecosystems. Comments on Toxicology, 9, 255–269.CrossRefGoogle Scholar
  34. Patrón-Prado, M., Acosta-Vargas, B., Serviere-Zaragoza, E., & Medez-Rodriguez, L. C. (2010). Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water, Air, and Soil Pollution, 210, 197.CrossRefGoogle Scholar
  35. Patrón-Prado, M., Casas-Valdez, M., Serviere-Zaragoza, E., Zenteno-Savín, D. B., Lluch-Cota, L., & Méndez-Rodríguez, L. C. (2011). Biosorption capacity or cadmiumo brown seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California. Water, Air, and Soil Pollution, 221, 137–144.CrossRefGoogle Scholar
  36. Phillips, D. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments, a review. Environmental Pollution, 13, 281–317.CrossRefGoogle Scholar
  37. Radwan, M., El-Gendy, K., & Gad, A. (2010). Biomarkers of oxidative stress in the land snail, Theba pisana for assessing ecotoxicological effects of urban metal pollution. Chemosphere, 79, 40–46.CrossRefGoogle Scholar
  38. Ramirez, M., Massolo, S., Frache, R., & Correa, J. (2005). Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50, 62–72.CrossRefGoogle Scholar
  39. Rybak, A., Messyasz, B., & Łeska, B. (2013). The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its hábitat. Ecotoxicology, 22, 558–573.CrossRefGoogle Scholar
  40. Rodriguez, J., Menéndez, J., & Trujillo, Y. (2001). Radicales libres en la biomedicina y estrés oxidativo. Revista Cubana Medicine Millitary, 30(1), 36–44.Google Scholar
  41. Romay, C., Pascual, C., & Lissi, E. (1996). The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Brazilian Journal of Medical and Biological Research, 29, 175–183.Google Scholar
  42. Romera, E., González, F., Ballester, A., Blázquez, M., & Muñoz, J. (2006). Biosorption with algae: a statistical review. Critical Reviews in Biotechnology, 26, 223–235.CrossRefGoogle Scholar
  43. Ryan, S,, McLoughlin, P., & O’Donovanm, O. (2012). A comprehensive study of metal distribution in three main classes of seaweed. Environmental Pollution 167, 171--177.Google Scholar
  44. Solaun, O., Rodriguez, J. G., Borja, A., Gonzalez, M., & Saiz-Salinas, J. I. (2013). Biomonitoring of metals under the water framework directive: detecting temporal trends and abrupt changes, in relation to the removal of pollution sources. Marine Pollution Bulletin, 26–35.Google Scholar
  45. Soto, P., Gaete, H., & Hidalgo, M. E. (2011). Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Latin American Journal of Aquatic Research, 39(2), 280–285.CrossRefGoogle Scholar
  46. Stauber, J., Andrade, S., Ramirez, M., Adams, M., & Correa, J. A. (2005). Copper bioavailability in a coastal environment of Northern Chile: comparison of bioassay and analytical speciation approaches. Marine Pollution Bulletin, 50, 1363–1372.CrossRefGoogle Scholar
  47. Turner, A., Pollock, H., & Brown, M. T. (2009). Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environmental Pollution, 157, 2314–2319.CrossRefGoogle Scholar
  48. Torres, M., Barros, M., Campos, S., Pinto, E., Rajamani, S., Sayre, R., & Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicology and Environmental Safety, 71, 1–15.CrossRefGoogle Scholar
  49. Ustunada, M., Erdugan, H., Yılmaz, S., Akgul, R., & Aysel, V. (2011). Seasonal concentrations of some heavy metals (Cd, Pb, Zn, and Cu) in Ulvarigida J. Agardh (Chlorophyta) from Dardanelles (Canakkale, Turkey). Environmental Monitoring and Assessment, 177, 337–342.CrossRefGoogle Scholar
  50. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178–189.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hernán Gaete Olivares
    • 1
    • 2
  • Natalia Moyano Lagos
    • 3
  • Carlos Jara Gutierrez
    • 4
  • Romina Carrasco Kittelsen
    • 3
  • Gabriela Lobos Valenzuela
    • 5
    • 2
  • María Eliana Hidalgo Lillo
    • 5
  1. 1.Escuela de Ingeniería en Medioambiente, Facultad de IngenieríaUniversidad de ValparaísoPlaya AnchaChile
  2. 2.Centro de Investigación y Gestión de Recursos Naturales CIGRENPlaya AnchaChile
  3. 3.Escuela de Biología de Marina, Facultad de Ciencias del Mar y Recursos NaturalesUniversidad de ValparaísoViña del MarChile
  4. 4.Laboratorio de Investigación—Estrés Oxidativo, Facultad de MedicinaUniversidad de ValparaísoValparaísoChile
  5. 5.Instituto de Química y Bioquímica, Facultad de CienciasUniversidad de ValparaísoPlaya AnchaChile

Personalised recommendations