Multi-element composition of soils of seasonal wetlands across North Dakota, USA

  • A. H. Yellick
  • D. L. Jacob
  • E. S. DeKeyser
  • C. L. M. Hargiss
  • L. M. Meyers
  • M. Ell
  • L. T. Kissoon-Charles
  • M. L. Otte


The main goal of this study was to assess if the soils of wetlands of different condition varied in terms of element composition. The rationale was that compared to wetlands of good condition, wetlands of poor condition—which in the region have typically been disturbed by agricultural activities, are lower in biodiversity and have fewer native species—would have been altered in their physical and chemical soil characteristics. This in turn would have altered the element composition of the soils. The concentrations of about 50 elements in the topsoil of 43 seasonal wetlands of varying condition, as measured by plant community based assessments, across North Dakota were determined. Organic matter content of the soils increased as condition increased, and it was the most important variable explaining 40 % of variation in the concentrations of elements. This can be partly explained by binding of elements to organic matter (S, Se) and for most other elements (that bind mostly to the inorganic fraction) by displacement by organic matter. The biogeochemistry of S is further implicated in the distribution of Ca, most likely via formation of insoluble gypsum (calcium sulfate).


Biogeochemistry Wetland condition Assessment Elements Soil chemistry Metals 



This project was supported by grants from the US Environmental Protection Agency (EPA/ND Department of Health Wetland Program Development Grant, National Center for Research Resources (5P20RR016471-1), from the North Dakota Agriculture Experiment Station/NDSU College of Science and Mathematics small grants program, and from an NIH grant (number P20 RR016471) from the INBRE program of the National Institute of General Medical Sciences. Thanks to Steph Longstaff Hummel for help with Fig. 1. Special thanks also to reviewers for their very helpful advice.

Supplementary material

10661_2015_5013_MOESM1_ESM.xlsx (19 kb)
Supplementary Materials Table S1 (XLSX 18 kb)
10661_2015_5013_MOESM2_ESM.xlsx (99 kb)
Supplementary Materials Table S2 (XLSX 98 kb)
10661_2015_5013_MOESM3_ESM.xlsx (29 kb)
Supplementary Materials Table S3 (XLSX 29 kb)
10661_2015_5013_MOESM4_ESM.xlsx (25 kb)
Supplementary Materials Table S4 (XLSX 24 kb)


  1. Arndt, J. L., & Richardson, J. L. (1988). Hydrology, salinity and hydric soil development in a North Dakota prairie-pothole wetland system. Wetlands, 8, 93–108. doi: 10.1007/BF03160595.CrossRefGoogle Scholar
  2. Arndt, J. L., & Richardson, J. L. (1989). Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie-pothole wetland system. Soil Science Society of America Journal, 53, 848–855. doi: 10.2136/sssaj1989.03615995005300030037x.CrossRefGoogle Scholar
  3. Bresler, E., McNeal, B. L., & Carter, D. L. (1982). Saline and sodic soils. Advanced series in agricultural sciences 10 (p. 236). Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
  4. Brubaker, S. C., Jones, A. J., Lewis, D. T., & Frank, K. (1993). Soil properties associated with landscape position. Soil Science Society of America Journal, 57, 235–239. doi: 10.2136/sssaj1993.03615995005700010041x.CrossRefGoogle Scholar
  5. Cihacek, L.J., Franzen, D.W., Seaholm, J., Swenson, L.J., Johnson, A., Gunderson, J. & Dahnke, W.C. (2009). Summary of Soil Fertility Levels for North Dakota, 1991-2001. NDSU Extension Service, North Dakota State University, Fargo, ND. Document nr. SF-1397.
  6. Combs, S.M. & Nathan, M.V/ (2012). Soil Organic matter. In: Recommended Chemical Soil Test Procedures for the North Central Region. Missouri Agricultural Experiment Station SB 1001. North Central Regional Research Publication No. 221 (Revised). Chapter 12. Pp. 12.1-12.6.
  7. Dahl, T.E. (2014). Status and Trends of Prairie Wetlands in the United States 1997 to 2009. U.S. Fish and Wildlife Service. Washington D.C.
  8. Ellis, S., & Mellor, A. (1995). Soils and environment. London, New York: Routledge.CrossRefGoogle Scholar
  9. Euliss, N. H., LaBaugh, J. W., Fredrickson, L. H., Mushet, D. M., Laubhan, M. K., Swanson, G. A., Winter, T. C., Rosenberry, T. C., & Nelson, R. D. (2004). The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands, 24, 448–458. doi: 10.1672/0277-5212(2004)024[0448:TWCACF]2.0.CO;2.CrossRefGoogle Scholar
  10. Galatowitsch, S. M., Whited, D. C., Lehtinen, R., Husveth, J., & Schik, K. (2000). The vegetation of wet meadows in relation to their land-use. Environmental Monitoring and Assessment, 60, 121–144. doi: 10.1023/A:1006159028274.CrossRefGoogle Scholar
  11. Garrett, R.G. (1994). The distribution of cadmium in a horizon soils of Canada and adjoining United States. Current Research 1994B: Interior Plains and Arctic Canada. Geological Survey of Canada, 73-82.
  12. Gilbert, M.C., Whited, P.M., Clairain, Jr. E.J. & Smith, R.D. (2006) A regional guidebook for applying the hydrogeomorphic approach to assessing wetland functions of prairie potholes. U.S. Army Engineer Research and Development Center, Vicksburg, MS. Publication ERDC/EL TR-06-5.
  13. Gleason, R.A. & Euliss, N.H. Jr. (1998). Sedimentation of Prairie Wetlands. Great Plains Research, 8, 97-112.
  14. Goldhaber, M. B., Mills, C. T., Morrison, J. M., Stricker, C. A., Mushet, D. M., & LaBaugh, J. W. (2014). Hydrogeochemistry of prairie pothole region wetlands: role of long-term critical zone processes. Chemical Geology, 387, 170–183. doi: 10.1016/j.chemgeo.2014.08.023.CrossRefGoogle Scholar
  15. Grossman, J.N., Grosz, A.E., Schweitzer, P.N., Schruben, P.G. (2004). The National Geochemical Survey—Database and Documentation. U.S. Geological Survey Open-File Report 2004-1001.
  16. Hargiss, C.L.M. (2009). Estimating wetland quality for the Missouri Coteau ecoregion in North Dakota. PhD Dissertation, North Dakota State University, Fargo, ND.
  17. Hargiss, C. L. M., & DeKeyser, E. S. (2014). The challenges of conducting environmental research on privately owned land. Environmental Monitoring and Assessment, 186, 979–985. doi: 10.1007/s10661-013-3432-8.CrossRefGoogle Scholar
  18. Hargiss, C. L. M., DeKeyser, E. S., Kirby, D. R., & Ell, M. J. (2008). Regional assessment of wetland plant communities using the index of plant community integrity. Ecological Indicators, 8, 303–307. doi: 10.1016/j.ecolind.2007.03.003.CrossRefGoogle Scholar
  19. Heagle, D., Hayashi, M., & Van der Kamp, G. (2013). Surface–subsurface salinity distribution and exchange in a closed-basin prairie wetland. Journal of Hydrology, 478, 1–14. doi: 10.1016/j.jhydrol.2012.05.054.CrossRefGoogle Scholar
  20. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335–348. doi: 10.2134/jeq1993.00472425002200020015x.CrossRefGoogle Scholar
  21. Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition of trace element chemistry. Applied geochemistry, 2, 437--451. doi: 10.1016/0883-2927(87)90027-8
  22. Jacob, D. L., & Otte, M. L. (2003). Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air and Soil Pollution, Focus, 3, 91–104. doi: 10.1023/A:1022138919019.CrossRefGoogle Scholar
  23. Jacob, D. L., Otte, M. L., & Hopkins, D. G. (2011). Phyto (In)stabilization of elements. International Journal of Phytoremediation, 13, 34–54. doi: 10.1080/15226514.2011.568535.CrossRefGoogle Scholar
  24. Jacob, D. L., Yellick, A. H., Kissoon, L. T., Asgary, A., Wijeyaratne, D. N., Saini-Eidukat, B., & Otte, M. L. (2013). Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environmental Pollution, 178, 211–219. doi: 10.1016/j.envpol.2013.03.005.CrossRefGoogle Scholar
  25. Johnson, W. C., Boettcher, S. E., Poiani, K. A., & Guntenspergen, G. (2004). Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands, 24, 385–398.CrossRefGoogle Scholar
  26. Jokic, A., Cutler, J. N., Ponomarenko, E., van der Kamp, G., & Anderson, D. W. (2003). Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using K-edge XANES and NMR spectroscopy. Geochimica et Cosmochimica Acta, 67, 2585–2597. doi: 10.1016/S0016-7037(03)00101-7.CrossRefGoogle Scholar
  27. He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impact on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140. doi: 10.1016/j.jtemb.2005.02.010.CrossRefGoogle Scholar
  28. Kantrud, H.A., Krapu, G.L. & Swanson, G.L. (1989). Prairie basin wetlands of the Dakotas: a community profile. US Fish and Wildlife Service Biological Report 85 (7.28).
  29. Kissoon, L. T., Jacob, D. L., & Otte, M. L. (2010). Multi-element accumulation near Rumex crispus roots under wetland and dryland conditions. Environmental Pollution, 130, 337–345. doi: 10.1016/j.envpol.2009.11.001.Google Scholar
  30. Kissoon, L. T., Jacob, D. L., & Otte, M. L. (2011). Multiple elements in Typha angustifolia rhizosphere and plants: wetland versus dryland. Environmental and Experimental Botany, 72, 232–241. doi: 10.1016/j.envexpbot.2011.03.010.CrossRefGoogle Scholar
  31. LaBaugh, J. W., Winter, T. C., & Rosenberry, D. O. (1998). Hydrologic functions of prairie wetlands. Great Plains Research, 8, 17–37.Google Scholar
  32. Lopez, R.D. & Fennessy, M.S. (2002). Testing the Floristic Quality Assessment Index as an indicator of wetland condition. Ecological Applications, 12, 487–497. doi:  10.1890/1051-0761(2002)012[0487:TTFQAI]2.0.CO;2 doi: 10.1890/1051-0761(2002)012%5b0487:TTFQAI%5d2.0.CO;2
  33. Markert, B. (1996). Instrumental element and multi-element analysis of plant samples—methods and applications (p. 296). Chichester, UK: John Wiley & Sons.Google Scholar
  34. Markert, B., Fränzle, S., & Wünschmann, S. (2015). Chemical evolution—the biological system of the elements. Cham, Switzerland: Springer.Google Scholar
  35. Martin, D. B., & Hartman, W. A. (1984). Arsenic, cadmium, lead, mercury, and selenium in sediments of riverine and pothole wetlands of the north central United States. Journal of the Association of Analytical Chemists, 67, 1141–1146.Google Scholar
  36. Mason, J. (2012). Bakken's maximum potential oil production rate explored. Oil and Gas Journal, 2 April 2012,, accessed 24 August 2015.
  37. Miller, S.J., Wardrop, D.H., Mahaney, W.M. & Brooks, R.P. (2006). A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania. Ecological Indicators, 6, 290–312. doi: 10.1016/j.ecolind.2005.03.011 doi: 10.1016/j.ecolind.2005.03.011#doilink
  38. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (5th ed.). New York: Wiley.Google Scholar
  39. Mushet, D.M., Euliss, N.H. Jr. & Schaffer, T.L. (2002). Floristic Quality Assessment of one natural and three restored wetland complexes in North Dakota, USA. Wetlands, 22, 126-138. Doi:;2
  40. Niemuth, N., Wangler, B., & Reynolds, R. E. (2010). Spatial and temporal variation in wet Area of Wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Wetlands, 30, 1053–1064. doi: 10.1007/s13157-010-0111-1.CrossRefGoogle Scholar
  41. Niskavaara, H., Reimann, C., Chekushin, V., & Kashulina, G. (1997). Seasonal variability of total and easily leachable element contents in topsoils (0-5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia). Environmental Pollution, 96, 261–274. doi: 10.1016/S0269-7491(97)00031-6.CrossRefGoogle Scholar
  42. Preston, T. M., Sojda, R. S., & Gleason, R. A. (2013). Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States. Journal of Soil and Water Conservation, 68, 199–211. doi: 10.2489/jswc.68.3.199.CrossRefGoogle Scholar
  43. Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
  44. Reimann, C., Boyd, R., de Caritat, P., Halleraker, J. H., Kashulina, G., Niskavaara, H., & Bogatyrev, I. (1997). Topsoil (0-5 cm) composition in eight arctic catchments in northern Europe (Finland, Norway and Russia). Environmental Pollution, 95, 45–56. doi: 10.1016/S0269-7491(96)00102-9.CrossRefGoogle Scholar
  45. Reimann, C., Kashulina, G., de Caritat, P., & Niskavaara, H. (2001). Multi-element, multi-medium regional geochemistry in the European arctic: element concentration, variation and correlation. Applied Geochemistry, 16, 759–780. doi: 10.1016/S0883-2927(00)00070-6.CrossRefGoogle Scholar
  46. Reimann, C., Filtzmoser, P., Garrett, R., & Dutter, R. (2008). Statistical data analysis explained. Applied environmental statistics with R. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
  47. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
  48. Shacklette, H.T. & Boerngen, J.G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States. United States Geological Survey professional paper 1270.
  49. Smith, D.B., Cannon, W.F., Woodruff, L.G., Garrett, R.G., Klassen, R., Kilburn, J.E., Horton, J.D., King, H.D., Goldhaber, M.B. & Morrison, J.M. (2005). Major- and trace element concentrations in soils from two continental-scale transects of the United States and Canada. US Geological Survey. Open-File Rep. #1253.
  50. Spurgeon, D. J., Rowland, P., Ainsworth, G., Rothery, P., Lond, S., & Black, H. I. J. (2008). Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils. Environmental Pollution, 153, 273–283. doi: 10.1016/j.envpol.2007.08.027.CrossRefGoogle Scholar
  51. Tabatabai, M. A. (2005). Chemistry of sulfur in soils. In M. A. Tabatabai & D. L. Sparks (Eds.), Chemical processes in soils (pp. 193–226). Madison, WI, USA: Soil Science Society of America.Google Scholar
  52. ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide. Wageningen, The Netherlands: Biometris, Wageningen University and Research Center.Google Scholar
  53. The Northern Great Plains Floristic Quality Assessment Panel (2001). Coefficients of conservatism for the vascular flora of the Dakotas and adjacent grasslands. Federal Government Series: Information and Technology Report - 2001-0001, U.S. Geological Survey, Biological Resources Division, Information and Technology Report USGS/BRD/ITR.
  54. Wiken, E., Jiménez Nava, F. & Griffith, G. (2011). North American Terrestrial Ecoregions Level III. Commission for Environmental Cooperation, Montreal, Canada.
  55. Winter, T.C. (2003). Ed. Hydrological, chemical, and biological characteristics of a prairie pothole wetland complex under highly variable climate conditions: the Cottonwood Lake area, east-central North Dakota. USGS Professional Paper 1675.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Wet Ecosystem Research Group, Department of Biological SciencesNorth Dakota State UniversityFargoUSA
  2. 2.School of Natural Resource SciencesNorth Dakota State UniversityFargoUSA
  3. 3.URS CorporationBismarckUSA
  4. 4.North Dakota Department of Health, Division of Water QualityBismarckUSA

Personalised recommendations