Skip to main content

Advertisement

Log in

Multi-element composition of soils of seasonal wetlands across North Dakota, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The main goal of this study was to assess if the soils of wetlands of different condition varied in terms of element composition. The rationale was that compared to wetlands of good condition, wetlands of poor condition—which in the region have typically been disturbed by agricultural activities, are lower in biodiversity and have fewer native species—would have been altered in their physical and chemical soil characteristics. This in turn would have altered the element composition of the soils. The concentrations of about 50 elements in the topsoil of 43 seasonal wetlands of varying condition, as measured by plant community based assessments, across North Dakota were determined. Organic matter content of the soils increased as condition increased, and it was the most important variable explaining 40 % of variation in the concentrations of elements. This can be partly explained by binding of elements to organic matter (S, Se) and for most other elements (that bind mostly to the inorganic fraction) by displacement by organic matter. The biogeochemistry of S is further implicated in the distribution of Ca, most likely via formation of insoluble gypsum (calcium sulfate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arndt, J. L., & Richardson, J. L. (1988). Hydrology, salinity and hydric soil development in a North Dakota prairie-pothole wetland system. Wetlands, 8, 93–108. doi:10.1007/BF03160595.

    Article  Google Scholar 

  • Arndt, J. L., & Richardson, J. L. (1989). Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie-pothole wetland system. Soil Science Society of America Journal, 53, 848–855. doi:10.2136/sssaj1989.03615995005300030037x.

    Article  CAS  Google Scholar 

  • Bresler, E., McNeal, B. L., & Carter, D. L. (1982). Saline and sodic soils. Advanced series in agricultural sciences 10 (p. 236). Berlin, Heidelberg, New York: Springer Verlag.

    Book  Google Scholar 

  • Brubaker, S. C., Jones, A. J., Lewis, D. T., & Frank, K. (1993). Soil properties associated with landscape position. Soil Science Society of America Journal, 57, 235–239. doi:10.2136/sssaj1993.03615995005700010041x.

    Article  Google Scholar 

  • Cihacek, L.J., Franzen, D.W., Seaholm, J., Swenson, L.J., Johnson, A., Gunderson, J. & Dahnke, W.C. (2009). Summary of Soil Fertility Levels for North Dakota, 1991-2001. NDSU Extension Service, North Dakota State University, Fargo, ND. Document nr. SF-1397. http://www.ag.ndsu.edu/pubs/plantsci/soilfert/sf1397.pdf.

  • Combs, S.M. & Nathan, M.V/ (2012). Soil Organic matter. In: Recommended Chemical Soil Test Procedures for the North Central Region. Missouri Agricultural Experiment Station SB 1001. North Central Regional Research Publication No. 221 (Revised). Chapter 12. Pp. 12.1-12.6. http://extension.missouri.edu/explorepdf/specialb/sb1001.pdf.

  • Dahl, T.E. (2014). Status and Trends of Prairie Wetlands in the United States 1997 to 2009. U.S. Fish and Wildlife Service. Washington D.C. http://www.fws.gov/wetlands/Documents/Status-and-Trends-of-Prairie-Wetlands-in-the-United-States-1997-to-2009.pdf.

  • Ellis, S., & Mellor, A. (1995). Soils and environment. London, New York: Routledge.

    Book  Google Scholar 

  • Euliss, N. H., LaBaugh, J. W., Fredrickson, L. H., Mushet, D. M., Laubhan, M. K., Swanson, G. A., Winter, T. C., Rosenberry, T. C., & Nelson, R. D. (2004). The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands, 24, 448–458. doi:10.1672/0277-5212(2004)024[0448:TWCACF]2.0.CO;2.

    Article  Google Scholar 

  • Galatowitsch, S. M., Whited, D. C., Lehtinen, R., Husveth, J., & Schik, K. (2000). The vegetation of wet meadows in relation to their land-use. Environmental Monitoring and Assessment, 60, 121–144. doi:10.1023/A:1006159028274.

    Article  Google Scholar 

  • Garrett, R.G. (1994). The distribution of cadmium in a horizon soils of Canada and adjoining United States. Current Research 1994B: Interior Plains and Arctic Canada. Geological Survey of Canada, 73-82. http://ftp2.cits.rncan.gc.ca/pub/geott/ess_pubs/193/193646/cr_1994_b.pdf.

  • Gilbert, M.C., Whited, P.M., Clairain, Jr. E.J. & Smith, R.D. (2006) A regional guidebook for applying the hydrogeomorphic approach to assessing wetland functions of prairie potholes. U.S. Army Engineer Research and Development Center, Vicksburg, MS. Publication ERDC/EL TR-06-5. http://el.erdc.usace.army.mil/elpubs/pdf/trel06-5.pdf.

  • Gleason, R.A. & Euliss, N.H. Jr. (1998). Sedimentation of Prairie Wetlands. Great Plains Research, 8, 97-112. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1365&context=greatplainsresearch.

  • Goldhaber, M. B., Mills, C. T., Morrison, J. M., Stricker, C. A., Mushet, D. M., & LaBaugh, J. W. (2014). Hydrogeochemistry of prairie pothole region wetlands: role of long-term critical zone processes. Chemical Geology, 387, 170–183. doi:10.1016/j.chemgeo.2014.08.023.

    Article  CAS  Google Scholar 

  • Grossman, J.N., Grosz, A.E., Schweitzer, P.N., Schruben, P.G. (2004). The National Geochemical Survey—Database and Documentation. U.S. Geological Survey Open-File Report 2004-1001. http://mrdata.usgs.gov/geochem/doc/home.htm

  • Hargiss, C.L.M. (2009). Estimating wetland quality for the Missouri Coteau ecoregion in North Dakota. PhD Dissertation, North Dakota State University, Fargo, ND. http://search.proquest.com/docview/304961553

  • Hargiss, C. L. M., & DeKeyser, E. S. (2014). The challenges of conducting environmental research on privately owned land. Environmental Monitoring and Assessment, 186, 979–985. doi:10.1007/s10661-013-3432-8.

    Article  Google Scholar 

  • Hargiss, C. L. M., DeKeyser, E. S., Kirby, D. R., & Ell, M. J. (2008). Regional assessment of wetland plant communities using the index of plant community integrity. Ecological Indicators, 8, 303–307. doi:10.1016/j.ecolind.2007.03.003.

    Article  Google Scholar 

  • Heagle, D., Hayashi, M., & Van der Kamp, G. (2013). Surface–subsurface salinity distribution and exchange in a closed-basin prairie wetland. Journal of Hydrology, 478, 1–14. doi:10.1016/j.jhydrol.2012.05.054.

    Article  Google Scholar 

  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22, 335–348. doi:10.2134/jeq1993.00472425002200020015x.

    Article  CAS  Google Scholar 

  • Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition of trace element chemistry. Applied geochemistry, 2, 437--451. doi:10.1016/0883-2927(87)90027-8

  • Jacob, D. L., & Otte, M. L. (2003). Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air and Soil Pollution, Focus, 3, 91–104. doi:10.1023/A:1022138919019.

    Article  CAS  Google Scholar 

  • Jacob, D. L., Otte, M. L., & Hopkins, D. G. (2011). Phyto (In)stabilization of elements. International Journal of Phytoremediation, 13, 34–54. doi:10.1080/15226514.2011.568535.

    Article  Google Scholar 

  • Jacob, D. L., Yellick, A. H., Kissoon, L. T., Asgary, A., Wijeyaratne, D. N., Saini-Eidukat, B., & Otte, M. L. (2013). Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environmental Pollution, 178, 211–219. doi:10.1016/j.envpol.2013.03.005.

    Article  CAS  Google Scholar 

  • Johnson, W. C., Boettcher, S. E., Poiani, K. A., & Guntenspergen, G. (2004). Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands, 24, 385–398.

    Article  Google Scholar 

  • Jokic, A., Cutler, J. N., Ponomarenko, E., van der Kamp, G., & Anderson, D. W. (2003). Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using K-edge XANES and NMR spectroscopy. Geochimica et Cosmochimica Acta, 67, 2585–2597. doi:10.1016/S0016-7037(03)00101-7.

    Article  CAS  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impact on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140. doi:10.1016/j.jtemb.2005.02.010.

    Article  CAS  Google Scholar 

  • Kantrud, H.A., Krapu, G.L. & Swanson, G.L. (1989). Prairie basin wetlands of the Dakotas: a community profile. US Fish and Wildlife Service Biological Report 85 (7.28). http://www.nwrc.usgs.gov/techrpt/85-7-28.pdf.

  • Kissoon, L. T., Jacob, D. L., & Otte, M. L. (2010). Multi-element accumulation near Rumex crispus roots under wetland and dryland conditions. Environmental Pollution, 130, 337–345. doi:10.1016/j.envpol.2009.11.001.

    Google Scholar 

  • Kissoon, L. T., Jacob, D. L., & Otte, M. L. (2011). Multiple elements in Typha angustifolia rhizosphere and plants: wetland versus dryland. Environmental and Experimental Botany, 72, 232–241. doi:10.1016/j.envexpbot.2011.03.010.

    Article  CAS  Google Scholar 

  • LaBaugh, J. W., Winter, T. C., & Rosenberry, D. O. (1998). Hydrologic functions of prairie wetlands. Great Plains Research, 8, 17–37.

    Google Scholar 

  • Lopez, R.D. & Fennessy, M.S. (2002). Testing the Floristic Quality Assessment Index as an indicator of wetland condition. Ecological Applications, 12, 487–497. doi: 10.1890/1051-0761(2002)012[0487:TTFQAI]2.0.CO;2 doi:10.1890/1051-0761(2002)012%5b0487:TTFQAI%5d2.0.CO;2

  • Markert, B. (1996). Instrumental element and multi-element analysis of plant samples—methods and applications (p. 296). Chichester, UK: John Wiley & Sons.

    Google Scholar 

  • Markert, B., Fränzle, S., & Wünschmann, S. (2015). Chemical evolution—the biological system of the elements. Cham, Switzerland: Springer.

    Google Scholar 

  • Martin, D. B., & Hartman, W. A. (1984). Arsenic, cadmium, lead, mercury, and selenium in sediments of riverine and pothole wetlands of the north central United States. Journal of the Association of Analytical Chemists, 67, 1141–1146.

    CAS  Google Scholar 

  • Mason, J. (2012). Bakken's maximum potential oil production rate explored. Oil and Gas Journal, 2 April 2012, http://www.ogj.com/articles/print/vol-110/issue-4/exploration-development/bakken-s-maximum.html, accessed 24 August 2015.

  • Miller, S.J., Wardrop, D.H., Mahaney, W.M. & Brooks, R.P. (2006). A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania. Ecological Indicators, 6, 290–312. doi:http://dx.doi.org/10.1016/j.ecolind.2005.03.011 doi:10.1016/j.ecolind.2005.03.011#doilink

  • Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (5th ed.). New York: Wiley.

    Google Scholar 

  • Mushet, D.M., Euliss, N.H. Jr. & Schaffer, T.L. (2002). Floristic Quality Assessment of one natural and three restored wetland complexes in North Dakota, USA. Wetlands, 22, 126-138. Doi: http://dx.doi.org/%2010.1672/0277-5212(2002)022%5b0126:FQAOON%5d2.0.CO;2

  • Niemuth, N., Wangler, B., & Reynolds, R. E. (2010). Spatial and temporal variation in wet Area of Wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Wetlands, 30, 1053–1064. doi:10.1007/s13157-010-0111-1.

    Article  Google Scholar 

  • Niskavaara, H., Reimann, C., Chekushin, V., & Kashulina, G. (1997). Seasonal variability of total and easily leachable element contents in topsoils (0-5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia). Environmental Pollution, 96, 261–274. doi:10.1016/S0269-7491(97)00031-6.

    Article  CAS  Google Scholar 

  • Preston, T. M., Sojda, R. S., & Gleason, R. A. (2013). Sediment accretion rates and sediment composition in Prairie Pothole wetlands under varying land use practices, Montana, United States. Journal of Soil and Water Conservation, 68, 199–211. doi:10.2489/jswc.68.3.199.

    Article  Google Scholar 

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. Boca Raton, FL, USA: CRC Press.

    Book  Google Scholar 

  • Reimann, C., Boyd, R., de Caritat, P., Halleraker, J. H., Kashulina, G., Niskavaara, H., & Bogatyrev, I. (1997). Topsoil (0-5 cm) composition in eight arctic catchments in northern Europe (Finland, Norway and Russia). Environmental Pollution, 95, 45–56. doi:10.1016/S0269-7491(96)00102-9.

    Article  CAS  Google Scholar 

  • Reimann, C., Kashulina, G., de Caritat, P., & Niskavaara, H. (2001). Multi-element, multi-medium regional geochemistry in the European arctic: element concentration, variation and correlation. Applied Geochemistry, 16, 759–780. doi:10.1016/S0883-2927(00)00070-6.

    Article  CAS  Google Scholar 

  • Reimann, C., Filtzmoser, P., Garrett, R., & Dutter, R. (2008). Statistical data analysis explained. Applied environmental statistics with R. Chichester, UK: John Wiley & Sons.

    Book  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin, Germany: Springer-Verlag.

    Book  Google Scholar 

  • Shacklette, H.T. & Boerngen, J.G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States. United States Geological Survey professional paper 1270. http://pubs.usgs.gov/pp/1270/pdf/PP1270_508.pdf.

  • Smith, D.B., Cannon, W.F., Woodruff, L.G., Garrett, R.G., Klassen, R., Kilburn, J.E., Horton, J.D., King, H.D., Goldhaber, M.B. & Morrison, J.M. (2005). Major- and trace element concentrations in soils from two continental-scale transects of the United States and Canada. US Geological Survey. Open-File Rep. #1253. http://pubs.usgs.gov/of/2005/1253/.

  • Spurgeon, D. J., Rowland, P., Ainsworth, G., Rothery, P., Lond, S., & Black, H. I. J. (2008). Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils. Environmental Pollution, 153, 273–283. doi:10.1016/j.envpol.2007.08.027.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (2005). Chemistry of sulfur in soils. In M. A. Tabatabai & D. L. Sparks (Eds.), Chemical processes in soils (pp. 193–226). Madison, WI, USA: Soil Science Society of America.

    Google Scholar 

  • ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide. Wageningen, The Netherlands: Biometris, Wageningen University and Research Center.

    Google Scholar 

  • The Northern Great Plains Floristic Quality Assessment Panel (2001). Coefficients of conservatism for the vascular flora of the Dakotas and adjacent grasslands. Federal Government Series: Information and Technology Report - 2001-0001, U.S. Geological Survey, Biological Resources Division, Information and Technology Report USGS/BRD/ITR. http://pubs.er.usgs.gov/publication/itr20010001

  • Wiken, E., Jiménez Nava, F. & Griffith, G. (2011). North American Terrestrial Ecoregions Level III. Commission for Environmental Cooperation, Montreal, Canada. http://www3.cec.org/islandora/en/item/10415-north-american-terrestrial-ecoregionslevel-iii-en.pdf.

  • Winter, T.C. (2003). Ed. Hydrological, chemical, and biological characteristics of a prairie pothole wetland complex under highly variable climate conditions: the Cottonwood Lake area, east-central North Dakota. USGS Professional Paper 1675. http://pubs.er.usgs.gov/publication/pp1675.

Download references

Acknowledgements

This project was supported by grants from the US Environmental Protection Agency (EPA/ND Department of Health Wetland Program Development Grant, National Center for Research Resources (5P20RR016471-1), from the North Dakota Agriculture Experiment Station/NDSU College of Science and Mathematics small grants program, and from an NIH grant (number P20 RR016471) from the INBRE program of the National Institute of General Medical Sciences. Thanks to Steph Longstaff Hummel for help with Fig. 1. Special thanks also to reviewers for their very helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Otte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials Table S1

(XLSX 18 kb)

Supplementary Materials Table S2

(XLSX 98 kb)

Supplementary Materials Table S3

(XLSX 29 kb)

Supplementary Materials Table S4

(XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yellick, A.H., Jacob, D.L., DeKeyser, E.S. et al. Multi-element composition of soils of seasonal wetlands across North Dakota, USA. Environ Monit Assess 188, 17 (2016). https://doi.org/10.1007/s10661-015-5013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5013-5

Keywords

Navigation