Dissipation kinetics of emamectin benzoate and lufenuron residues in cabbage grown under field conditions



Residue analysis of emamectin benzoate and lufenuron in cabbage matrices and soil was developed using a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The samples were extracted with 1 % acetic acid in acetonitrile (v/v) or 1 % acetic acid in acetonitrile/water (5:1, v/v) and cleaned up by dispersive solid-phase extraction. Mean recoveries and relative standard deviations (RSDs) in all samples ranged 87.8–100.0 % and 3.6–12.6 % for emamectin benzoate and 87.8–104.8 % and 6.2–11.5 % for lufenuron, respectively. The validated method was used to evaluate the dissipation rate of emamectin benzoate and lufenuron in cabbage and soil as well as the residual levels in harvested cabbage and soil at different preharvest intervals (PHI). The half-lives of emamectin benzoate and lufenuron were 1.08–2.70 and 1.74–5.04 days in cabbage, and 1.42–4.01 and 0.94–6.18 days in soil, respectively. The terminal residues were below the China maximum residue limits (MRLs) at 3 days for emamectin benzoate (0.1 mg kg−1) and European Union MRLs at 5 days for lufenuron (0.5 mg kg−1), which suggested that 5 days could be recommended as the PHI for the commercial formulation of emamectin benzoate and lufenuron application in the Chinese cabbage field.


Emamectin benzoate Lufenuron Dissipation Residues Cabbage 



The authors acknowledge the Syngenta (China) Investment Co., Ltd. for providing the necessary financial support to accomplish this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahire, K. C., Arora, M. S., & Mukherjee, S. N. (2008). Development and application of a method for analysis of lufenuron in wheat flour by gas chromatography–mass spectrometry and confirmation of bio-efficacy against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Chromatography B, 861(1), 16–21.CrossRefGoogle Scholar
  2. Ahmed, S., Qureshi, F. A., Islam, A., & Adnan, A. (2011). Emamectin benzoate residue analysis in ground and terrestrial field water in Lahore suburban area. African Journal of Pure & Applied Chemistry, 5(13), 457–462.Google Scholar
  3. Aiyalu, R., Thangadurai, B., Krishnadas, M., Thomas, S. J., & Sandeep, N. (2013). Analysis of emamectin benzoate residues in cauliflower using HPLC. Research Journal of Pharmacy & Technology, 6(10), 1157–1160.Google Scholar
  4. Bletsou, A. A., Hanafi, A. H., Dasenaki, M. E., & Thomaidis, N. S. (2013). Development of specific LC-ESI-MS/MS methods to determine bifenthrin, lufenuron, and iprodione residue levels in green beans, peas, and chili peppers under Egyptian field conditions. Food Analytical Methods, 6(4), 1099–1112.CrossRefGoogle Scholar
  5. Boomathi, N., Kumaran, N., Kumar, B. V., Kuttalam, S., & Gunasekaran, K. (2009). Harvest time residues of emamectin benzoate in cotton. Madras Agricultural Journal, 96, 213–216.Google Scholar
  6. Cheng, Y., Li, S. X., Zhang, J., Mu, W., & Liu, F. (2012). Optimized the impact factors of fluorescence derivatization reaction and the application in the determination of emamectin benzoate in soil. Journal of Agro Environment Science, 31(12), 2506–2512.Google Scholar
  7. European Commission (2005). Pesticide EU-MRLs Regulation (EC) No. 396/2005. http://ec.europa.eu/food/plant/pesticides/max_residue_levels/eu_rules_en.htm.
  8. Hanafi, A., Garau, V. L., Caboni, P., Sarais, G., & Cabras, P. (2010). Minor crops for export: a case study of boscalid, pyraclostrobin, lufenuron and lambda-cyhalothrin residue levels on green beans and spring onions in Egypt. Journal of Environmental Science & Health Part B, 45(6), 493–500.CrossRefGoogle Scholar
  9. Hayes, J. M., & Farer, L. J. (2005). Comparison study of two procedures for the determination of emamectin benzoate in medicated fish feed. Journal of AOAC International, 88(2), 468–471.Google Scholar
  10. He, C. X., & Yu, X. C. (2012). An overview of the trend and future development of the world’s major vegetable production. Vegetables, 12, 1–6 (In Chinese).Google Scholar
  11. Hotz, R. P., Hassler, S., & Maurer, M. P. (2000). Determination of lufenuron in canine skin layers by radioluminography. Schweizer Archiv Fur Tierheilkunde, 142(4), 173–176.Google Scholar
  12. Janis, J., Mackichan, W., & Hink, F. (2006). High-performance liquid chromatographic determination of CGA-184699 (Lufenuron) in dog and cat blood. Journal of Liquid Chromatography, 16(12), 2595–2604.Google Scholar
  13. Jyot, G., Mandal, K., Chahil, G. S., & Singh, B. (2014). Persistence and risk assessment of emamectin benzoate residues on okra fruits and soil. Environmental Technology, 35(14), 1736–1743.CrossRefGoogle Scholar
  14. Khay, S., Choi, J. H., Abd El-Aty, A. M., Mamun, M. I., Park, B. J., Goudah, A., Shin, H. C., & Shim, J. H. (2008). Dissipation behavior of lufenuron, benzoylphenylurea insecticide, in/on Chinese cabbage applied by foliar spraying under greenhouse conditions. Bulletin of Environmental Contamination & Toxicology, 81(4), 369–372.CrossRefGoogle Scholar
  15. Kim-Kang, H., Crouch, L. S., Bova, A., Kono, T., Takemoto, T., Fujita, M., Saka, M., Iwasa, S., Ito, S., & Miyake, S. (2001). Determination of emamectin residues in the tissues of Atlantic salmon (Salmo Salar L.) using HPLC with fluorescence detection. Journal of Agricultural & Food Chemistry, 49(11), 5294–5302.CrossRefGoogle Scholar
  16. Kondo, M., Yamashita, H., Uchigashima, M., Kono, T., Takemoto, T., Fujita, M., Saka, M., Iwasa, S., Ito, S., & Miyake, S. (2009). Development of an enzyme-linked immunosorbent assay for residue analysis of the insecticide emamectin benzoate in agricultural products. Journal of Agricultural & Food Chemistry, 57, 359–364.CrossRefGoogle Scholar
  17. Kuo, J., Buday, C., Aggelen, G. V., Ikonomou, M. G., & Pasternak, J. (2010). Acute toxicity of emamectin benzoate and its desmethyl metabolite to Eohaustorius estuarius. Environmental Toxicology & Chemistry, 29(8), 1816–1820.Google Scholar
  18. Kwon, H., Lehotay, S. J., & Geis-Asteggiante, L. (2012). Variability of matrix effects in liquid and gas chromatography–mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of Chromatography A, 1270(24), 235–245.CrossRefGoogle Scholar
  19. Li, M. H., Chen, W. T., Li, M. Y., & Han, L. J. (2011). Dissipation and residues of emamectin benzoate study in paddy under field conditions. Bulletin of Environmental Contamination & Toxicology, 87(6), 699–702.CrossRefGoogle Scholar
  20. Li, M., Chen, W., Li, M., & Han, L. (2013a). Degradation dynamics of emamectin benzoate on cabbage under subtropical conditions of Punjab, India. Bulletin of Environmental Contamination & Toxicology, 91(1), 129–133.CrossRefGoogle Scholar
  21. Li, M., Liu, X., Dong, F., Xu, J., Kong, Z., Li, Y., & Zheng, Y. (2013b). Simultaneous determination of cyflumetofen and its main metabolite residues in samples of plant and animal origin using multi-walled carbon nanotubes in dispersive solid-phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1300, 95–103.CrossRefGoogle Scholar
  22. Liu, S. G., Zhang, F. Z., Wang, L., & Pan, C. P. (2012). Dissipation and residues of emamectin benzoate in cabbage. Bulletin of Environmental Contamination and Toxicology, 89(3), 654–657.CrossRefGoogle Scholar
  23. Liu, C. Y., Lu, D. H., Wang, Y. C., Huang, J. X., Wan, K., & Wang, F. H. (2014). Residue and risk assessment of pyridaben in cabbage. Food Chemistry, 149(8), 233–236.CrossRefGoogle Scholar
  24. Malhat, F., Almaz, M., Arief, M., El-Din, K., & Fathy, M. (2012). Residue and dissipation dynamics of lufenuron in tomato fruit using QuEChERS methodology. Bulletin of Environmental Contamination & Toxicology, 89(5), 1037–1039.CrossRefGoogle Scholar
  25. Ministry of Agriculture, P.R. China and National Health, & Family Planning Commission, P.R. China. (2014). National Food Safety Standard -- Maximum Residue Limits for Pesticides in Food. GB 2763–2014.Google Scholar
  26. Senguttuvan, K., & Kuttalam, S. (2014). Dissipation dynamics of lufenuron 5.4 EC residues in cauliflower. Trends in Biosciences, 7(15), 1917–1920.Google Scholar
  27. Singh, G., Chahil, G. S., Jyot, G., Battu, R. S., & Singh, B. (2013). Degradation dynamics of emamectin benzoate on cabbage under subtropical conditions of Punjab, India. Bulletin of Environmental Contamination & Toxicology, 91(1), 129–133.CrossRefGoogle Scholar
  28. Stahnke, H., Kittlaus, S., Kempe, G., Hemmerling, C., & Alder, L. (2012). The influence of electrospray ion source design on matrix effects. Journal of Mass Spectrometry, 47(7), 875–884.CrossRefGoogle Scholar
  29. Tan, H. H., Su, B. L., Zhang, C. L., Zeng, D. Q., & Wang, T. T. (2010). Dynamic analysis of lufehuron residues in/on tomato and bean. Agrochemicals, 49(6), 432–433 (In Chinese).Google Scholar
  30. The Ministry of Agriculture, P. R. China. (2004). Guideline on pesticide trials. Document No. NY/T788-2004.Google Scholar
  31. Vijayasree, V., Bai, H., Mathew, T. B., George, T., Xavier, G., Kumar, N. P., & Visalkumar, S. (2014). Dissipation kinetics and effect of different decontamination techniques on the residues of emamectin benzoate and spinosad in cowpea pods. Environmental Monitoring & Assessment, 186(7), 4499–4506.CrossRefGoogle Scholar
  32. Wang, L., Zhao, P. Y., Zhang, F. Z., Li, Y. J., Du, F. P., & Pan, C. P. (2012). Dissipation and residue behavior of emamectin benzoate on apple and cabbage field application. Ecotoxicology & Environmental Safety, 78(2), 260–264.CrossRefGoogle Scholar
  33. Zhang, Z. Y., Liu, X. J., Yu, X. Y., Zhang, C. Z., & Hong, X. Y. (2007). Pesticide residues in the spring cabbage (Brassica oleracea L. var. capitata) grown in open field. Food Control, 18(6), 723–730.CrossRefGoogle Scholar
  34. Zhang, Y., Wu, Y., Hu, J., Wang, H., Pan, C., & Liu, F. (2008). Determination of emamectin benzoate residue in vegetables by high performance liquid chromatography with fluorescence detection. Chinese Journal of Chromatography, 26(1), 110–112.Google Scholar
  35. Zhang, H. Y., Wang, C., Lu, H. Z., Guan, W. B., & Ma, Y. Q. (2011). Residues and dissipation dynamics of molluscicide metaldehyde in cabbage and soil. Ecotoxicology & Environmental Safety, 74(6), 1653–1658.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations