Quantifying landscape pattern and assessing the land cover changes in Piatra Craiului National Park and Bucegi Natural Park, Romania, using satellite imagery and landscape metrics



Protected areas of Romania have enjoyed particular importance after 1989, but, at the same time, they were subject to different anthropogenic and natural pressures which resulted in the occurrence of land cover changes. These changes have generally led to landscape degradation inside and at the borders of the protected areas. In this article, 12 landscape metrics were used in order to quantify landscape pattern and assess land cover changes in two protected areas, Piatra Craiului National Park (PCNP) and Bucegi Natural Park (BNP). The landscape metrics were obtained from land cover maps derived from Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) images from 1987, 1993, 2000, 2009 and 2010. Three land cover classes were analysed in PCNP and five land cover map classes in BNP. The results show a landscape fragmentation trend for both parks, affecting different types of land covers. Between 1987 and 2010, in PCNP fragmentation was, in principle, the result not only of anthropogenic activities such as forest cuttings and illegal logging but also of natural causes. In BNP, between 1987 and 2009, the fragmentation affected the pasture which resulted in the occurrence of bare land and rocky areas because of the erosion on the Bucegi Plateau.


Fragmentation Landscape metrics Landscape pattern Satellite images 



The author would like to thank the management of Piatra Craiului National Park and Bucegi Natural Park for their assistance in obtaining the material. Also, the author would like to express his gratitude to the two anonymous reviewers for their pertinent observations and comments and to Claudia Ciubancan for her support with the English language.


  1. Abrudan, I. V., Marinescu, V., Ionescu, O., Ioras, F., Horodnic, S. A., & Sestras, R. (2009). Developments in the Romanian forestry and its linkages with other sectors. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 14–21.Google Scholar
  2. Abrudan, I. V. (2012). A decade of non-state administration of forests in Romania: achievements and challenges. International Forestry Review, 14(3), 275–284.CrossRefGoogle Scholar
  3. Piatra Craiului National Park Administration (2011). Management Plan of Piatra Craiului National Park (in Romanian). http://www.pcrai.ro//files/Plan_site.pdf. Accessed 20 Jan 2015.
  4. Bucegi Natural Park Administration, (2011). Management plan of Bucegi Natural ark (in Romanian). http://www.bucegipark.ro/informatii.php?show=plan. Accessed 20 Jan 2015.
  5. Baldi, G., Guerschman, J. P., & Paruelo, J. M. (2006). Characterizing fragmentation in temperate South America grasslands. Agriculture, Ecosystems and Environment, 116(3), 197–208.CrossRefGoogle Scholar
  6. Batistella, M., Robeson, S., & Moran, E. F. (2003). Settlement design, forest fragmentation, and landscape change in Rondônia, Amazonia. Photogrammetric Engineering and Remote Sensing, 69(7), 805–812.CrossRefGoogle Scholar
  7. Bracchetti, L., Carotenuto, L., & Catorci, A. (2012). Land-cover changes in a remote area of central Apennines (Italy) and management directions. Landscape and Urban Planning, 104(2), 157–170.CrossRefGoogle Scholar
  8. Chavez Jr., P. S. (1996). Image-based atmospheric corrections—revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1036.Google Scholar
  9. Congalton, R. G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: Principles and practices. London: CRC Press Taylor & Francis Group.Google Scholar
  10. Coppedge, B. R., Engle, D. M., Fuhlendorf, S. D., Masters, R. E., & Gregory, M. S. (2002). Landscape cover type and pattern dynamics in fragmented southern Great Plains grasslands, USA. Landscape Ecology, 16(8), 677–690.CrossRefGoogle Scholar
  11. DeFries, R., Hansen, A., Turner, B. L., Reid, R., & Liu, J. (2007). Land use change around protected areas: management to balance human needs and ecological function. Ecological Applications, 17(4), 1031–1038.CrossRefGoogle Scholar
  12. Egbert, S. L., Park, S., Price, K. P., Lee, R. Y., Wu, J., & Nellis, M. D. (2002). Using conservation reserve program maps derived from satellite imagery to characterize landscape structure. Computers and Electronics in Agricuture, 37(1–3), 141–156.CrossRefGoogle Scholar
  13. Esbah, H., Deniz, B., Kara, B., & Kesgin, B. (2010). Analyzing landscape changes in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics. Environmental Monitoring and Assessment, 165(4), 617–632.CrossRefGoogle Scholar
  14. Forman, R. T. T. (1995). Land mosaics—The ecology of landscape and regions. Cambridge: Cambridge University Press.Google Scholar
  15. Foster, D. R., Orwig, D. A., & McLachlan, J. S. (1996). Ecological and conservation insights from reconstructive studies of temperate old-growth forests. Trends in Ecology and Evolution, 11(10), 419–425.CrossRefGoogle Scholar
  16. Frohn, R. C. (1998). Remote sensing for landscape ecology: New metric indicators for monitoring, modeling, and assessment of ecosystems. Florida: Boca Raton, Lewis Publications.Google Scholar
  17. Garbarino, M., Sibona, E., Lingua, E., & Motta, R. (2014). Decline of traditional landscape in a protected area of the southwestern Alps: the fate of enclosed pasture patches in the land mosaic shift. Journal of Mountain Science, 11(2), 544–554.CrossRefGoogle Scholar
  18. Geri, F., Amici, V., & Rocchini, D. (2010). Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370–379.CrossRefGoogle Scholar
  19. Girvetz, E. H., Thorne, J. H., Berry, A. M., & Jaeger, J. A. G. (2008). Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA. Landscape and Urban Planning, 86(3), 205–218.CrossRefGoogle Scholar
  20. Ienciu, I., Dimen, L., Ludusan, N., Grecea, C., Borsan, T., & Oprea, L. (2012). Dynamics of the rill and gully erosion using GIS technologies. Journal of Environmental Protection and Ecology, 13(1), 345–351.Google Scholar
  21. Iojă, C. I., Patroescu, M., Rozylowicz, L., Popescu, V. D., Verghelet, M., Zotta, M. I., et al. (2010). The efficacy of Romania’s protected areas network in conserving biodiversity. Biological Conservation, 143(11), 2468–2476.CrossRefGoogle Scholar
  22. Ioraş, F., & Abrudan, I. V. (2006). The Romanian forestry sector: privatisation facts. International Forestry Review, 8(3), 361–367.CrossRefGoogle Scholar
  23. Irland, L. C. (2008). State failure, corruption, and warfare: challenges for forest policy. Journal of Sustainable Forestry, 27(3), 189–223.CrossRefGoogle Scholar
  24. Jenkins, C. N., & Joppa, L. (2009). Expansion of the global terrestrial protected area system. Biological Conservation, 142(10), 2166–2174.CrossRefGoogle Scholar
  25. Jensen, J. R. (2007). Remote sensing of the environment: an earth resource perspective. New Jersey: Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
  26. Joern, A., & Keeler, K. H. (1995). Getting the lay of the land: introducing North American native grassland: In: Joern, A. and Keeler, K. H. (Eds.), The changing prairie: North American grasslands (pp. 11–24). New York: Oxford University Press.Google Scholar
  27. Joppa, L. N., Loarie, S. R., & Pimm, S. L. (2008). On the protection of “protected areas”. Proceedings of the National Academy of Sciences, 105(18), 6673–6678.CrossRefGoogle Scholar
  28. Kintz, D. B., Young, K. R., & Crews-Meyer, K. A. (2006). Implications of land use/landcover change in the buffer zone of a national park in the tropical Andes. Environmental Management, 38(2), 238–252.CrossRefGoogle Scholar
  29. Knorn, J., Kuemmerle, T., Szabo, A., Mindrescu, M., Keeton, W. S., Radeloff, V. C., et al. (2012). Forest restitution and protected area effectiveness in post-socialist Romania. Biological Conservation, 146(1), 204–212.CrossRefGoogle Scholar
  30. Knorn, J. (2012). Studying land-use and land-cover change with high resolution data—an assessment of the Carpathian Ecoregion. PhD Thesis, Humboldt-Universität zu Berlin – Geographisches Institut: Berlin, 165 p.Google Scholar
  31. Kobayashi, S., & Sanga-Ngoie, K. (2008). The integrated radiometric correction of optical remote sensing imageries. International Journal of Remote Sensing, 29(20), 5957–5985.CrossRefGoogle Scholar
  32. Kuemmerle, T., Hostert, P., Radeloff, V. C., Perzanowski, K., & Kruhlov, I. (2007). Postsocialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecological Applications, 17(5), 1279–1295.CrossRefGoogle Scholar
  33. Kuemmerle, T., Chaskovskyy, O., Knorn, J., Radeloff, V. C., Kruhlov, I., Keeton, W. S., et al. (2009). Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 113(6), 1194–1207.CrossRefGoogle Scholar
  34. Lausch, A., & Herzog, H. (2002). Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2(1), 3–15.CrossRefGoogle Scholar
  35. Li, H., & Reynolds, J. F. (1993). A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology, 8(3), 155–162.CrossRefGoogle Scholar
  36. Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Remote sensing and image interpretation. NewYork: JohnWiley & Sons.Google Scholar
  37. Lôbo, D., Leão, T., Melo, F. P., Santos, A. M., & Tabarelli, M. (2011). Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions, 17(2), 287–296.CrossRefGoogle Scholar
  38. Markham, B. L., & Barker, J. L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exatmospheric reflectances and at-satellite temperatures. EOSAT Landsat Technical Notes, 1, 3–8.Google Scholar
  39. Martinez del Castillo, E., Garcia-Martin, A., Longares Aladrén, L. A., & de Luis, M. (2015). Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Applied Geography, 62, 247–255.CrossRefGoogle Scholar
  40. McGarigal, K., & Marks, B. J. (1995). Fragstats: spatial pattern analysis program for quantifying landscape structure. General Technical Report PNW–GTR–351. Portland OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.Google Scholar
  41. Nagendra, H., Pareeth, S., Sharma, B., Schweik, C. M., & Adhikari, K. R. (2008). Forest fragmentation and regrowth in an institutional mosaic of community, government and private ownership in Nepal. Landscape Ecology, 23(1), 41–54.CrossRefGoogle Scholar
  42. Naveh, Z. (1995). Interactions of landscapes and cultures. Landscape and Urban Planning, 32(1), 43–54.CrossRefGoogle Scholar
  43. Paavola, J., Gouldson, A., & Kluvankova-Oravska, T. (2009). Interplay of actors, scales, frameworks and regimes in the governance of biodiversity. Environmental Policy and Governance, 19(3), 148–158.CrossRefGoogle Scholar
  44. Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307.CrossRefGoogle Scholar
  45. Pierce, S. M., Cowling, R. M., Knight, A. T., Lombard, A. T., Rouget, M., & Wolf, T. (2005). Systematic conservation planning products for land-use planning: interpretation for implementation. Biological Conservation, 125(4), 441–458.CrossRefGoogle Scholar
  46. Pôças, I., Cunha, M., & Pereira, L. S. (2011). Remote sensing based indicators of changes in a mountain rural landscape of Northeast Portugal. Applied Geography, 31(3), 871–880.CrossRefGoogle Scholar
  47. Reddy, C. S., Sreelekshmi, S., Jha, C. S., & Dadhwal, V. K. (2013). National assessment of forest fragmentation in India: landscape indices as measures of the effects of fragmentation and forest cover change. Ecological Engineering, 60, 453–464.CrossRefGoogle Scholar
  48. Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688.CrossRefGoogle Scholar
  49. Soran, V., Biro, J., Moldovan, O., & Ardelean, A. (2000). Conservation of biodiversity in Romania. Biodiversity and Conservation, 9(8), 1187–1198.CrossRefGoogle Scholar
  50. Southworth, J., & Tucker, C. (2001). The influence of accessibility, local institutions, and socioeconomic factors on forest cover change in the mountains of western Honduras. Mountain Research and Development, 21(3), 276–283.CrossRefGoogle Scholar
  51. Tereşneu, C. C. (2012). Automatic data processing of geodetic data. Brasov: Transilvania University Publishing House (in Romanian).Google Scholar
  52. Tudoran, G. M. (2013). Regulations regarding the management of forests included in natural protected areas. Bulletin of the Transilvania University of Braşov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 6(55)(1), 33–38.Google Scholar
  53. Uuemaa, E., Mander, U., & Marja, R. (2013). Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecological Indicators, 28, 100–106.CrossRefGoogle Scholar
  54. Risser, P. G., Birney, E. C., Blocker, H. D., May, S. W., Parton, W. J., & Wiens, J. A. (1981). The true prairie ecosystem. Stroudsburg, Pennsylvania: Hutchinson Ross Publishing Company.Google Scholar
  55. Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., & Guisan, A. (2008). Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9(3), 137–152.CrossRefGoogle Scholar
  56. Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20, 171–197.CrossRefGoogle Scholar
  57. Turner, B. L., & Meyer, W. B. (1993). Environmental change: the human factor. In M. J. McDonnell, & S. T. A. Pickett (Eds.), Humans as components of ecosystems (pp. 40–50). New York: Springer-Verlag.CrossRefGoogle Scholar
  58. Vanonckelen, S., Lhermitte, S., & Van Rompaey, A. (2013). The effect of atmospheric and topographic correction methods on land cover classification accuracy. International Journal of Applied Earth Observation and Geoinformation, 24(1), 9–21.CrossRefGoogle Scholar
  59. Voiculescu, M. (2009). The present-day erosional processes in the alpine level of the Bucegi Mountains—Southern Carpathians. Geographic Forum. Studies and Research in Geography and Environment, VIII(8), 23–37.Google Scholar
  60. Vorovencii, I., & Iordache, E. (2013). Identification and analysis of forest disturbances and fragmentation in Giurgeu Mountains, Romania, using Landsat data. In: Proceedings of the 6th international scientific conference „Rural Development 2013”, Vol. 6, Book 3, Kaunas, Lithuania, pp. 513–518.Google Scholar
  61. Young, J., Richards, C., Fischer, A., Halada, L., Kull, T., Kuzniar, A., et al. (2007). Conflicts between biodiversity conservation and human activities in the central and eastern European countries. AMBIO: A Journal of the Human Environment, 36(7), 545–550.CrossRefGoogle Scholar
  62. Yuan, F., Kali Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98(2), 317–328.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Transilvania University of BrasovBrasovRomania

Personalised recommendations