Advertisement

Assessment of typical natural processes and human activities’ impact on the quality of drinking water

  • Sanja Mrazovac Kurilić
  • Vladanka Presburger Ulniković
  • Nenad Marić
  • Milenko Vasiljević
Article

Abstract

This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4 +, Cl, NO2 , NO3 , Fe, Mn, As, Ca2+, Mg2+, SO4 2−, HCO3 , K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na–HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3 content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.

Keywords

Groundwater Serbia Natural processes Anthropogenic impact Arsene Organic matter 

References

  1. APHA. (1995). Standard methods for the examination of water and wastewater (17th ed.). Washington: APHA.Google Scholar
  2. Appello, C. A. J., & Postma, D. (1993). Geochemistry groundwater and pollution (p. 534). Rotterdam: A A Balkema.Google Scholar
  3. Bissen, M., & Frimmel, F. (2003). Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica, 31(1), 9–18.CrossRefGoogle Scholar
  4. Biswas, B. K., Dhar, R. K., Samanta, G., Mandal, B. K., Chakraborti, D., Faruk, I., Islam, K. S., Chowdhury, M. M., Islam, A., & Roy, S. (1998). Detailed study report of samta, one of the arsenic-affected villages of jessore district, bangladesh. Current. Science., 74(2), 134–145.Google Scholar
  5. Borgoño, J. M., Vicent, P., Venturino, H., & Infante, H. (1977). Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environmental Health Perspectives, 19, 103–105.CrossRefGoogle Scholar
  6. Cebrian, M. E., Albores, A., Aquilar, M., & Blakely, E. (1983). Chronic arsenic poisoning in the north of Mexico. Human Toxicology, 2, 121–133.CrossRefGoogle Scholar
  7. Chatterjee, A., Das, D., Mandal, B. K., Chowdhury, T. R., Samanta, G., & Chakraborti, D. (1995). Arsenicin groundwater in six districts of west Bengal, India: the biggest arsenic calamity in the world. Part I.Arsenic species in drinking water and urine of the affected people. Analyst, 120, 643–650.CrossRefGoogle Scholar
  8. Chen, S. L., Dzeng, S. R., Yang, M. H., Chiu, K. H., Shieh, G. M., & Wai, C. M. (1994). Arsenic species in groundwaters of the blackffot disease area, Taiwan. Environmental Science & Technology, 28, 877–881.CrossRefGoogle Scholar
  9. Ćuk M, Todorović M, Stojković J (2009) Arsenic in groundwater for water supply in Vojvodina, XI Serbian Symposium on Hydrogeology, University of Belgrade, Faculty of Mining and Geology, Department of Hydrogeology: 611-615Google Scholar
  10. Das, D., Samanta, G., Mandal, B. K., Roy Chowdhury, T., Chanda, C. R., Chowdhury, P. P., Bose, G. K., & Chakraborti, D. (1996). Arsenic in groundwater in six districts of west Bengal, India. Environmental Geochemistry and Health, 18, 5–15.CrossRefGoogle Scholar
  11. De Sastre MSR, Varillas A & Kirschbaum P (1992). Arsenic content in water in the northwestarea of Argentina. Arsenic in the environment and its incidence on health. International seminar proceedings, Universidad de Chile, Santiago, Chile: 91–99.Google Scholar
  12. Dhar, R. K., Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A., & Hadi, S. A. (1997). Groundwater arsenic calamity in Bangladesh. Current Science, 73(1), 48–59.Google Scholar
  13. Elango, L., Kannan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in part of kancheepuram district, Tamil Nadu. Indian J Environmental Geoscience, 10(4), 157–166.CrossRefGoogle Scholar
  14. Erdelyi M (1979) Hydrodynamics of the Hungarian Basin. VITUKI Proc. 18, BudapestGoogle Scholar
  15. Fisher, S. R., & Mullican, W. F. (1997). Hydrogeochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the northern Chihuahua desert, trans-Pecos, Texas, USA. Hydrogeology Journal, 5, 4–16. doi: 10.1007/s100400050102.CrossRefGoogle Scholar
  16. Horvath, F., Dovenyi, P., Szalay, A., & Royden, L. H. (1988). Subsidence, thermal, and maturation history of the great Hungarian plain. In L. H. Royden & F. Horvath (Eds.), The pannonian basin: a study in basin evolution (pp. 355–372). Tulsa: American Association of Petroleum Geologists. Hungarian standard methods. MSZ448Ivovizvizsgalat in Hungarian.Google Scholar
  17. Josipović, J., & Soro, A. (2010). Groundwater of vojvodina. Institute for development of water resources. Belgrade: Jaroslav Černi. in Serbian.Google Scholar
  18. Juhasz, A., Toth, T., Ramseyer, K., & Matter, A. (2002). Connected fluid evolution in fractured crystalline basement and overlying sediments, the pannonian basin, SE Hungary. Chemical Geology, 182, 91120.CrossRefGoogle Scholar
  19. Kipling, M. D. (1977). Arsenic. In J. Lenihan & W. W. Fletcher (Eds.), The chemical environment (pp. 93–120). Glasgow: Blackie and Son.Google Scholar
  20. Malešević, M. (1982). BGM, sheet srbobran 1:100,000 and textual explanation. Belgrade: Federal Geological Bureau (in Serbian).Google Scholar
  21. Mandal, B. K., Roy Chowdhury, T., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., Lodhi, D., Karan, N. K., Dhar, R. K., Tamili, D. K., Das, D., Saha, K. C., & Chakraborti, D. (1996). Arsenic ingroundwater in seven districts of west Bengal, India: the biggest arsenic calamity in the world. Current Science, 70(11), 976–986.Google Scholar
  22. Matthess, G. (1982). The properties of groundwater (p. 498). New York: Wiley.Google Scholar
  23. Mayback, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.CrossRefGoogle Scholar
  24. Milosavljević S, Vasiljević M, Vilovski S (1997) Hydrogeological explorations in Vojvodina (Explorations for drinking, industrial and thermomineral waters), Monography 100 years of hydrogeology in Yugoslavia, Belgrade: 117-146Google Scholar
  25. Nazaroff, W., & Alvarez-Cohen, L. (2001). Environmental engineering science (pp. 280–362). New York: John Willey and Sons.Google Scholar
  26. Nicolli, H., Suriano, J., Gomez Peral, M., Ferpozzi, L., & Baleani, O. (1989). Groundwater contamination with arsenic and other trace elements inan area of the pampa, province of cordoba, Argentina. Environmental Geology and Water Science, 14, 3–16.CrossRefGoogle Scholar
  27. Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of bangladesh groundwater. Nature, 395, 338.CrossRefGoogle Scholar
  28. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union Transaction, 25, 914–923.CrossRefGoogle Scholar
  29. Polomčić, D., Stevanović, Z., Dokmanović, P., Ristić Vakanjac, V., Hajdin, B., Milanović, S., & Bajić, D. (2011). Groundwater in water supply of Serbia––current state and perspectives (pp. 45–77). Belgrade: Faculty of Mining and Geology.Google Scholar
  30. Regulations on the hygienic quality of drinking water (1998) Official Gazette, no. 42Google Scholar
  31. Rogers, R. J. (1989). Geochemical comparison of groundwater in areas of New England, New York, and Pennsylvania. Groundwater, 27(5), 690–712.CrossRefGoogle Scholar
  32. Rowland, H. A. L., Omoregie, O. E., Millot, R., Jimenez, C., Mertens, J., Baciu, C., Hug, J. S., & Berg, M. (2011). Geochemistry and arsenic behavior in groundwater resources of the pannonian basin (Hungary and Romania). Applied Geochemistry, 26, 1–17.CrossRefGoogle Scholar
  33. Saha, D., Sarangam, S. S., Dwived, S. N., & Bhartariya, K. G. (2010). Evaluation of hydrogeochemical processes in arsenic-contaminated alluvial aquifers in parts of Mid-ganga basin, Bihar, eastern India. Environmental Earth Science, 61(4), 799–811.CrossRefGoogle Scholar
  34. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  35. Takem, G. E., Chandrasekharam, D., Ayonghe, S. N., & Thambidurai, P. (2010). Pollution characteristics of alluvial groundwater from springs and bore wells in semi-urban informal settlements of Douala, Cameroon, western africa. Environmental Earth Science, 61(2), 287–298.CrossRefGoogle Scholar
  36. Tanaka, T. (1990). Arsenic in the natural environment. Part II: arsenic concentrations in thermal waters from Japan. Applied Organometallic Chemistry, 4, 197–203.CrossRefGoogle Scholar
  37. Tang, X., Wu, M., Yang, W., Yin, W., Jin, F., Ye, M., Currie, N. I., & Scholz, M. (2012). Ecological strategy for eutrophication control. Water, Air, and Soil Pollution, 223, 723–737.CrossRefGoogle Scholar
  38. Varsányi, I., & Kovasc, O. L. (1997). Chemical evolution of groundwater in the river Danube deposits in the southern part of the pannonian basin. Applied Geochemistry, 12, 625–636.CrossRefGoogle Scholar
  39. Varsányi, I., Matray, J. M., & Kovacs, O. L. (1997). Geochemistry of formation waters in the Pannonian Basin (southeast Hungary). Chemical Geology, 140, 89–106.CrossRefGoogle Scholar
  40. Varsányi, I., Matray, J. M., & Kovacs, O. L. (1999). Hydrogeochemistry in two adjacent areas in the Pannonian Basin, southeast Hungary. Chemical Geology, 156(1), 25–39.CrossRefGoogle Scholar
  41. Varsányi, I., Kovacs, O. L., Karpati, Z., & Matray, J. M. (2002). Carbon forms in formation waters from the Pannonian Basin, Hungary. Chemical Geology, 189, 165–182.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sanja Mrazovac Kurilić
    • 1
  • Vladanka Presburger Ulniković
    • 1
  • Nenad Marić
    • 2
  • Milenko Vasiljević
    • 2
  1. 1.Faculty of Ecology and Environmental ProtectionUniversity Union Nikola TeslaBelgradeSerbia
  2. 2.Faculty of Mining and GeologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations