Assessment of metal contamination in groundwater and soils in the Ahangaran mining district, west of Iran

  • Behzad Mehrabi
  • Shiva Mehrabani
  • Behrouz Rafiei
  • Behrouz Yaghoubi


In this study, 28 groundwater and 13 soil samples from Ahangaran mining district in Hamedan Province, west of Iran were collected to evaluate the level of contamination. Average concentrations of As, Cu, Pb, Zn, Mn, Sb, and Ni in groundwater samples were 1.39, 3.73, 2.18, 9.37, 2.35, 4.44, and 5.50 μg/L (wet season), and 11.64, 4.92, 4.32, 14.77, 5.43, 4.12, and 0.98 μg/L (dry season), respectively. Results of groundwater samples analysis showed that the average of analyzed metals in the wet and dry seasons were below the permissible limits, except As in the dry season which displays concentrations that exceed US EPA water quality criteria recommended for drinking water. Also, the heavy metal pollution index (HPI) values in each sampling station were less than the critical index limit and were suitable for drinking. Factor analysis revealed that variables influential to groundwater quality in one season may not be as important in another season. Average concentrations of Ag, As, Cd, Cu, Pb, Sb, and Zn in soil samples were 2.61, 31.44, 0.51, 55.90, 1284.9, 21.26, and 156.04 mg kg−1, respectively. The results of the geoaccumulation index (I geo) showed the following decreasing order: Pb > Zn > Cu > As > Sb > Cd > Ag. Potential ecological risk index (RI) suggests that the contamination in the investigated area is moderate to very high risk and the ranking of the contaminants in decreasing order is Ag > Sb > Pb > Cd > As > Cu > Zn.


Metals Seasonal variations Geoaccumulation index Ahangaran mine Iran 



The authors would like to thank Kharazmi University for logistics. We are grateful to the Sormak Company (Ahangaran mine) for their cooperation, especially Mr. Khakbaz. We thank Mr. Mehrdad Abas Moein of the Regional Water Survey and Mr. Pirmoradi for their assistance in field work and positive comments at various stages of the work.


  1. Adriano, D. C. (1986). Trace elements in the terrestrial environment (p. 533). New York: Springer.CrossRefGoogle Scholar
  2. Bell, F. G., Stacey, T. R., & Genske, D. D. (2000). Mining subsidence and its effect on the environment: some differing examples. Environmental Geology, 40(1–2), 135–152.CrossRefGoogle Scholar
  3. Berger, B.R., Ayuso, R.A., Wynn, J.C., & Seal, R.R. (2008). Preliminary model of porphyry copper deposits. USGS Open-File Report 1321, Washington, USA.Google Scholar
  4. Biptista-Neto, J. A., Gingele, F. X., Leipe, T., & Brehme, I. (2006). Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environmental Geology, 49, 1051–1063.CrossRefGoogle Scholar
  5. Chen, K. P., Jiao, J. J., Huang, J. M., & Huang, R. Q. (2007). Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution, 147, 771–780.CrossRefGoogle Scholar
  6. Donald, L.S. (1995). Environmental soil chemistry. Academic Press. 267 pp.Google Scholar
  7. EPA. (2012). Drinking water contaminants. Environmental Protection Agency. P 18. contaminants/index.html.
  8. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114, 313–324.CrossRefGoogle Scholar
  9. Fianko, J. R., Osae, S., Adomako, D., & Achel, D. G. (2009). Relationship between land use and groundwater quality in six districts in the eastern region of Ghana. Environmental Monitoring and Assessment, 153, 139–146. doi: 10.1007/s10661-008-03440.CrossRefGoogle Scholar
  10. Ficklin, W. H., Plumlee, G. S., Smith, K. S., & McHugh, J. B. (1992). Geochemical classification of mine drainage and natural drainage in mineralized areas. In Y. K. Kharaka & A. S. Maest (Eds.), Proc. 7th International Symposium Water-Rock Interaction (pp. 381–384). Rotterdam: Balkema.Google Scholar
  11. Garcia, J. H., Li, W. W., Arimoto, R., Qkarasinski, R., Greenllee, J., & Walton, J. (2004). Characterization and implication of potential fugitive dust sources in the Paso del Norte region. Science of the Total Environment, 325, 95–112.CrossRefGoogle Scholar
  12. Garrels, R. M., & Mackenzie, F. T. (1971). Gregor’s denudation of the continents. Nature, 231, 382–383.CrossRefGoogle Scholar
  13. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.CrossRefGoogle Scholar
  14. Gil, C., Boluda, R., & Ramos, J. (2004). Determination and evaluation of cadmium of lead and nickel in greenhouse soils of Almería (Spain). Chemosphere, 55, 1027–1034.CrossRefGoogle Scholar
  15. Gil, C., Ramos-Miras, J., Roca-Pérez, L., & Boluda, R. (2010). Determination and assessment of mercury content in calcareous soils. Chemosphere, 78, 409–415.CrossRefGoogle Scholar
  16. Gjoka, F., Felix-Henningsen, P., Wagener Hans, R., Salillari, I., & Beqiraj, A. (2010). Heavy metals in soils from Tirana (Albania). Journal of Environmental Monitor Assessment. doi: 10.1007/s10661-010-1351-5.Google Scholar
  17. Gupta, A., Gupta, S., & Patil, R. (2009). Statistical analyses of coastal water quality for a port and harbour region in India. Environmental Monitoring and Assessment, 102, 179–200.CrossRefGoogle Scholar
  18. Hakanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14(8), 975–1001.CrossRefGoogle Scholar
  19. Huang, G. X., Sun, J. C., Jing, J. H., Wang, S., Du, H. Y., Liu, J. T., Chen, X., Zhang, Y. X., Di, X. B., & Zhi, B. F. (2008). Distribution and origin of iron in groundwater of Zhujiang delta. Geology in China, 35, 531–538 (in Chinese with English abstract).CrossRefGoogle Scholar
  20. Iavazzo, P., Adamo, P., Boni, M., Hillier, S., & Zampella, M. (2012). Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. Journal of Geochemical Exploration, 113, 56–67.CrossRefGoogle Scholar
  21. Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (5th ed., p. 767). New Jersey: Prentice Hall.Google Scholar
  22. Johnson, R. H., Blowes, D. W., Robertson, W. D., & Jambor, J. L. (2000). The hydrogeochemistry of the nickel rim mine tailings impoundment, Sudbury, Ontario. Journal of Contaminant Hydrology, 41, 49–80.CrossRefGoogle Scholar
  23. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin - Heidelberg: Springer.CrossRefGoogle Scholar
  24. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton, FL: CRC Press.Google Scholar
  25. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.CrossRefGoogle Scholar
  26. Knox, A.S., Gamerdinger, A.P., Adriano, D.C., Kokla, R.K., & Kaplan, D.I. (1999). Sources and practices contributing to soil contamination. Bioremediation of Contaminated Soils, Am. Soc. Agron., 53, Madison, WI.Google Scholar
  27. Koljonen, T. (1992). The geochemical atlas of Finland. Geological Survey of Finland, Espoo, Finland.Google Scholar
  28. Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzmer, J., & Walters, S. (2005). Sediment-hosted lead–zinc deposits: a global perspective. Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Inc, pp. 561–607.Google Scholar
  29. Leung, C. M., & Jiao, J. J. (2006). Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong. Water Research, 40, 753–767.CrossRefGoogle Scholar
  30. Li, S., & Zhang, Q. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. Journal of Hazardous Materials, 176, 579–588.CrossRefGoogle Scholar
  31. Li, S., Liu, W., Gu, S., Cheng, X., Xu, Z., & Zhang, Q. (2009). Spatio-temporal dynamics of nutrients in the upper Han River basin, China. Journal of Hazardous Materials, 162, 1340–1346.CrossRefGoogle Scholar
  32. Lizárraga-Mendiola, L., González-Sandoval, M. R., Durán-Domínguez, M. C., & Márquez-Herrera, C. (2009). Geochemical behavior of heavy metals in a Zn–Pb–Cu mining area in the State of Mexico (central Mexico). Environmental Monitoring and Assessment, 155, 355–372. doi: 10.1007/s10661-008-0440-1.CrossRefGoogle Scholar
  33. Loska, K., & Wiechula, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51, 723–733.CrossRefGoogle Scholar
  34. Malayeri, B., Mir Ghafari, N., & Shariatmadari, H. (2005). Heavy metal contamination assessment in water, soil & plants due to extraction processes in Ahangaran Pb & Zn Mine, Hamedan Province. 373 President Deputy Strategic Planning and Control Organization, unpublished technical report.Google Scholar
  35. Manta, D. S., Angelone, M., Bellanca, A., Neri, A., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.CrossRefGoogle Scholar
  36. Meshkani, S. A., Mehrabi, B., Yaghubpur, A., & Fadakar Alghandi, Y. (2011). The application of geochemical pattern recognition to regional prospecting: a case study of the Sanandaj-Sirjan metallogenic zone, Iran. Journal Geochemical Exploration, 108, 183–195.CrossRefGoogle Scholar
  37. Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health, A31, 283–289.CrossRefGoogle Scholar
  38. Momenzadeh, M., Shafighi, S., Rastad, E., & Amstutz, G. C. (1979). The Ahangaran lead-silver deposit, SE-Malayer, west central Iran. Mineralium Deposita, 14, 323–341.CrossRefGoogle Scholar
  39. Müller, G. (1979). Schwermetalle in den sedimenten des RheinsdVeranderungen seitt 1971. Umschan, 79, 778–783.Google Scholar
  40. Nowake, B. (1998). Contents and relationship of elements in human hair for a non-industrialized population in Poland. Science of the Total Environment, 209, 59–68.CrossRefGoogle Scholar
  41. Peganova, S., & Edlet, K. (2004). Zinc. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment (2nd ed., pp. 1203–1239). Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  42. Pekey, H., Karaka, D., & Bakoglu, M. (2004). Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Marine Pollution Bulletin, 49, 809–818.CrossRefGoogle Scholar
  43. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions of the American Geophysical Union, 25, 914–923.CrossRefGoogle Scholar
  44. Prasad, B., & Bose, J. M. (2001). Evaluation of heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology, 41, 183–188.CrossRefGoogle Scholar
  45. Prasad, B., & Kumary, S. (2008). Heavy metal pollution index of ground water of an abandoned open cast mine filled with fly ash: a case study. Mine Water and the Environment, 27, 265–267.CrossRefGoogle Scholar
  46. Prasanna, M. V., Chidambaram, S., Senthil Kumar, G., Ramanathan, A. L., & Nainwal, H. C. (2010). Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore District, South India. Arab Journal Geoscience. doi: 10.1007/s12517-010-0191-5.Google Scholar
  47. Qishlaqi, A., Moore, F., & Forghani, G. (2009). Characterization of metal pollution in soils under two land use patterns in the Angouran region, NW Iran; a study based on multivariate data analysis. Journal hazardous Materials, 172, 374–384.CrossRefGoogle Scholar
  48. Rafiei, B., Khodaei, A. S., Khodabakhsh, S., Hashemi, M., & Bakhtiari nejad, M. (2010). Contamination assessment of lead, zinc, copper, cadmium, arsenic and antimony in Ahangaran mine soils, Malayer, west of Iran. Soil and Sediment Contamination, 19, 573–586.CrossRefGoogle Scholar
  49. Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17, 185–206.CrossRefGoogle Scholar
  50. Reimann, C., Filzmoser, P., Garrett, R.G., & Dutter, R. (2007). Statistical data analysis explained, applied environmental statistics with R. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, pp 359.Google Scholar
  51. Reinmann, C., & de Caritat, P. (1998). Chemical elements in the environment: fact sheets for the geochemist and environmental scientist. Geological Magazine, 137(5), 596.Google Scholar
  52. Santos, A., Alonso, E., Callejon, M., & Jimenez, J. C. (2002). Distribution of Zn, Cd, Pb and Cu metals in groundwater of the Guadiamar river basin. Water Air and Soil Pollution, 134(1–4), 273–283.CrossRefGoogle Scholar
  53. Schulin, R., Curchod, F., Mondeshka, M., Daskalova, A., & Keller, A. (2007). Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria). Geoderma, 140, 52–61.CrossRefGoogle Scholar
  54. Shi, G., Chen, Z., Bi, C., Li, Y., Teng, J., Wang, L., et al. (2010). Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environmental Pollution, 158, 694–703.CrossRefGoogle Scholar
  55. Shtangeeva, I., Kehelin, H., & Laiho, H. (2005b). Effects of soil fertilization on uptake of macro- and trace elements. Intern Workshop Fate and Impact of Persistent Pollutants in Agroecosystems. IUNG, Pulawy, pp, 154–155.Google Scholar
  56. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Research, 38, 3980–3992.CrossRefGoogle Scholar
  57. Soltani, N., Moore, F., Keshavarzi, B., & Sharifi, R. (2014). Geochemistry of trace metals and rare earth elements in stream water, stream sediment and acid mine drainage from Darrehzar copper mine, Kerman, Iran. Water Quality Expositiones Health. doi: 10.1007/s12403-014-0114-x.Google Scholar
  58. Stocklin, J. (1968). Structural history and tectonics of Iran: a review. American Association of 423 Petroleum Geologists Bulletin, 52, 1229–1258.Google Scholar
  59. Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry. New York: Wiley Interscience.Google Scholar
  60. Sun, Y. B., Zhou, Q. X., Xie, X. K., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal Hazardous Materials, 174, 455–462.CrossRefGoogle Scholar
  61. Upadhyay, A. K., Gupta, K. K., Sircar, J. K., et al. (2006). Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environmental Geology, 50, 397–403.CrossRefGoogle Scholar
  62. Wang, X. S., & Qin, Y. (2006). Spatial distribution of metals in urban topsoils of Xuzhou (China): controlling factors and environmental implications. Environmental Geology, 49, 905–914.CrossRefGoogle Scholar
  63. Wennrich, R., Mattusch, J., Morgenstern, P., Freyer, K., Treutler, H., Stärk, H., Brüggemann, L., Daus, B., & Weiss, H. (2004). Characterization of sediments in an abandoned mining area; a case study of Mansfeld region, Germany. Environmental Geology, 4, 818–833.CrossRefGoogle Scholar
  64. WHO. (2006). Guidelines for drinking-water quality, recommendations (3rd ed.). Geneva: World Health Organization.Google Scholar
  65. WHO (World Health Organization). (2004). Guidelines for drinking water quality, vol 1 (3rd ed., p. 515). Geneva: WHO.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Behzad Mehrabi
    • 1
  • Shiva Mehrabani
    • 1
  • Behrouz Rafiei
    • 2
  • Behrouz Yaghoubi
    • 3
  1. 1.Facuty of Earth Sciences, Geochemistry DepartmentKharazmi UniversityTehranIran
  2. 2.Department of Geology, Faculty of ScienceBu Ali Sina UniversityHamedanIran
  3. 3.Hamedan Regional Water SurveyHamedanIran

Personalised recommendations