Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry

  • Mahmoud Roushani
  • Shahryar Abbasi
  • Hossein Khani


We describe a nanosized Hg(II)-imprinted polymer that was prepared from methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as cross-linker, 2,2′-azobisisobutyronitrile (AIBN) as radical initiator, 2, 2′-di pyrydyl amine as a specific ligand, and Hg (II) as the template ions by precipitation polymerization method in methanol as the progeny solvent. Batch adsorption experiments were carried out as a function of pH, Hg (II) imprinted polymer amount, adsorption and desorption time, volume, and concentration of eluent. The synthesized polymer particles were characterized physically and morphologically by using infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopic techniques. The maximum adsorption capacity of the ion-imprinted and non-imprinted sorbent was 27.96 and 7.89 mg g−1, respectively. Under optimal conditions, the detection limit for mercury was 0.01 μg L−1 and the relative standard deviation was 3.2 % (n = 6) at the 1.00 μg L−1. The procedure was applied to determination of mercury in fish and water samples with satisfactory results.


Ion-imprinted polymer Nanoparticles Mercury Food samples 



The authors are grateful to the Ilam University Research Council for financing the project.


  1. Abbasi, S., Roushani, M., Khani, H. A., Sahraei, R., & Mansouri, G. (2015). Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions. Spectrochimica Acta A, 140, 534–543.CrossRefGoogle Scholar
  2. Adlnasab, L., Ebrahimzadeh, H., Asgharinezhad, A. A., Nasiri Aghdam, M., Dehghani, A., & Esmaeilpour, S. (2014). A preconcentration procedure for determination of ultra-trace mercury (II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry. Food Analytical Methods, 7, 616–628.CrossRefGoogle Scholar
  3. Andac, M., Mirel, S., Senel, S., Say, R., Ersoz, A., & Denizli, A. (2007). Ion-imprinted beads for molecular recognition based mercury removal from human serum. International Journal of Biological Macromolecules, 40, 159–166.CrossRefGoogle Scholar
  4. Batlokwa, B. S., Chimuka, L., Tshentu, Z., Cukrowska, E., & Torto, N. (2012). An ion-imprinted polymer for the selective extraction of mercury (II) ions in aqueous media. Water SA, 38, 255–260.CrossRefGoogle Scholar
  5. Behbahani, M., Taghizadeh, M., Bagheri, A., Hosseini, H., Salarian, M., & Tootoonchi, A. (2012). A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchimica Acta, 178, 429–437.CrossRefGoogle Scholar
  6. Behbahani, M., Salarian, M., Bagheri, A., Tabani, H., Omidi, F., & Fakhari, A. (2014). Synthesis, characterization and analytical application of Zn(II)-imprinted polymer as an efficient solid-phase extraction technique for trace determination of zinc ions in food samples. Journal of Food Composition and Analysis, 34, 81–89.CrossRefGoogle Scholar
  7. Buyuktiryakis, S., Say, R., Denizli, A., & Ersoz, A. (2007). Mimicking receptor for methylmercury preconcentration based on ion-imprinting. Talanta, 71, 699–705.CrossRefGoogle Scholar
  8. Dakova, I., Karadjova, I., Georgieva, V., & Georgiev, G. (2009). Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury. Talanta, 78, 523–529.CrossRefGoogle Scholar
  9. Dakova, I., Yordanova, T., & Karadjova, I. (2012). Non-chromatographic mercury speciation and determination in wine by new core-shell ion-imprinted sorbents. Journal of Hazardous Materials, 231–232, 49–56.CrossRefGoogle Scholar
  10. Daniel, S., Rao, P., & Rao, T. P. (2005). Investigation of different polymerisation methods on the analytical performance of palladium (II) ion imprinted polymer materials. Analytica Chimica Acta, 536, 197–206.CrossRefGoogle Scholar
  11. Dehno Khalaji, D., Mehrani, S., Eigner, V., & Dusek, M. (2013). Synthesis, experimental and theoretical studies on its crystal structure and FT-IR spectrum of new thiosemicarbazone compound E-2-(4-isopropylbenzylidene)thiosemicarbazone. Journal of Molecular Structure, 1047, 87–94.CrossRefGoogle Scholar
  12. Ebrahimzadeh, H., Behbahani, M., Yamini, Y., Adlnasab, L., & Asgharinezhad, A. A. (2013). Optimization of Cu(II)-ion imprinted nanoparticles for trace monitoring of copper in water and fish samples using a Box–Behnken design. Reactive & Functional Polymers, 73, 23–29.CrossRefGoogle Scholar
  13. EPA (Environmental Protection Agency, United States) (2001). Mercury update: Impact of fish advisories. In: EPA Fact Sheet EPA823-F-01-011, Office of Water, USEPA, Washington, DC.Google Scholar
  14. Fan, Z. (2006). Hg (II)-imprinted thiol-functionalized mesoporous sorbent micro-column preconcentration of trace mercury and determination by inductively coupled plasma optical emission spectrometry. Talanta, 70, 1164–1169.CrossRefGoogle Scholar
  15. Firouzzare, M., & Wang, Q. (2012). Synthesis and characterization of a high selective mercury (II)-imprinted polymer using novel aminothiol monomer. Talanta, 101, 261–266.CrossRefGoogle Scholar
  16. Ghaedi, M., Ahmadi, F., & Shokrollahi, A. (2007). Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. Journal of Hazardous Materials, 142, 272–278.CrossRefGoogle Scholar
  17. Hayes, R. B. (1997). The carcinogenicity of metals in humans. Cancer Causes and Control, 8, 371–385.CrossRefGoogle Scholar
  18. He, Q., Chang, X. J., Zheng, H., Jiang, N., Hu, Z., & Wang, X. Y. (2008). Determination of chromium (III) and total chromium in natural waters using a surface ion-imprinted silica gel as selective adsorbent. International Journal of Environmental Analytical Chemistry, 88, 373–384.CrossRefGoogle Scholar
  19. Huang, X., Liao, X., & Shi, B. (2009). Hg (II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. Journal of Hazardous Materials, 170, 1141–1148.CrossRefGoogle Scholar
  20. Jones, P., & Hardy, S. (1997). Development of a capillary electrophoretic method for the separation and determination of trace inorganic and organomercury species utilizing the formation of highly absorbing water soluble dithizone sulphonate complexes. Journal of Chromatography A, 765, 345–352.CrossRefGoogle Scholar
  21. Kalate Bojdi, M., Behbahani, M., Sahragard, A., Golrokh Amin, B., Fakhari, A., & Bagheri, A. (2014). A palladium imprinted polymer for highly selective and sensitive electrochemical determination of ultra-trace of palladium ions. Electrochimica Acta, 149, 108–116.CrossRefGoogle Scholar
  22. Kalate Bojdi, M., Behbahani, M., Najafi, M., Bagheri, A., Omidi, F., & Salimi, S. (2015). Selective and sensitive determination of uranyl ions in complex matrices by ion imprinted polymers-based electrochemical sensor. Electroanalysis, 27, 1–11.CrossRefGoogle Scholar
  23. Leopold, L., Foulkes, M., & Worsfold, P. G. (2010). Methods for the determination and speciation of mercury in natural waters—a review. Analytica Chimica Acta, 663, 127–138.CrossRefGoogle Scholar
  24. Li, S. X., Zheng, F. Y., Cai, S. J., & Cai, T. S. (2011). Determination of mercury and selenium in herbal medicines and hair by using a nanometer TiO2-coated quartz tube atomizer and hydride generation atomic absorption spectrometry. Journal of Hazardous Materials, 189, 609–613.CrossRefGoogle Scholar
  25. Lin, M. L., & Jiang, S. J. (2013). Determination of as Cd, Hg and Pb in herbs using slurry sampling electrothermal vaporisation inductively coupled plasma mass spectrometry. Food Chemistry, 141, 2158–2162.CrossRefGoogle Scholar
  26. Liu, Y., Changa, X., Yang, D., Guob, Y., & Meng, S. (2005). Highly selective determination of inorganic mercury (II) after preconcentration with Hg(II)-imprinted diazoaminobenzene–vinylpyridine copolymers. Analytica Chimica Acta, 538, 85–91.CrossRefGoogle Scholar
  27. Locatelli, C., & Melucci, D. (2012). Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food Chemistry, 130, 460–466.CrossRefGoogle Scholar
  28. Molochnikov, L. S., Kovalyova, E. G., Zagorodni, A. A., Muhammed, M., Sultanov, Y. M., & Efendiev, A. A. (2003). Coordination of Cu (II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation. Polymer, 44, 4805–4815.CrossRefGoogle Scholar
  29. Moreda-Pińeiro, J., López-Mahıa, P., Muniategui-Lorenzo, S., Fernández-Fernández, E., & Prada-Rodrıguez, D. (2002). Direct as, Bi, Ge, Hg and Se (IV) cold vapor/hydride generation from coal fly ash slurry samples and determination by electrothermal atomic absorption spectrometry. Spectrochimica Acta B, 57, 883–895.CrossRefGoogle Scholar
  30. Najafi, E., Aboufazeli, F., Lotfi Zadeh Zhad, H. R., Sadeghi, O., & Amani, V. (2013). A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury (II) ions in fish samples. Food Chemistry, 141, 4040–4045.CrossRefGoogle Scholar
  31. O’Meara, J. M., Brjesson, J., & Chettle, D. R. (2000). Improving the in vivo X-ray fluorescence (XRF) measurement of renal mercury. Applied Radiation and Isotopes, 53, 639–646.CrossRefGoogle Scholar
  32. Rajabi, H. R., Shamsipur, M., & Pourmortazavi, S. M. (2013). Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ ion in different water samples. Materials Science and Engineering C, 33, 3374–3381.CrossRefGoogle Scholar
  33. Roushani, M., Abbasi, S., & Khani, H. (2015). Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples. Environmental Monitoring and Assessment, 187, 219–232.CrossRefGoogle Scholar
  34. Safavi, A., Maleki, N., & Doroodmand, M. M. (2010). Fabrication of a selective mercury sensor based on the adsorption of cold vapor of mercury on carbon nanotubes: determination of mercury in industrial wastewater. Journal of Hazardous Materials, 173, 622–629.CrossRefGoogle Scholar
  35. Shamsipur, M., Rajabi, H. R., Beyzavi, M. H., & Sharghi, H. (2013). Bulk polymer nanoparticles containing a tetrakis (3-hydroxyphenyl) porphyrin for fast and highly selective separation of mercury ions. Microchimica Acta, 180, 791–799.CrossRefGoogle Scholar
  36. Shamsipur, M., Rajabi, H. R., Pourmortazavi, S. M., & Roushani, M. (2014). Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices. Spectrochimica Acta A, 117, 24–33.CrossRefGoogle Scholar
  37. Singh, D. K., & Mishra, S. (2010). Synthesis and characterization of Hg (II)-ion-imprinted polymer: kinetic and isotherm studies. Desalination, 257, 177–183.CrossRefGoogle Scholar
  38. Taty-Costodes, V. C., Fauduet, H., Porte, C., & Delacroix, A. (2003). Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105, 121–142.CrossRefGoogle Scholar
  39. Tu, Q., Qvarnstrm, J., & Frech, W. (2000). Determination of mercury species by capillary zone electrophoresis-inductively coupled plasma mass spectrometry: a comparison of two spray chamber–nebulizer combinations. Analyst, 125, 705–710.CrossRefGoogle Scholar
  40. Tuzen, M. (2003). Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80, 119–123.CrossRefGoogle Scholar
  41. Vatanpour, V., Madaenia, S. S., Zinadinia, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42.CrossRefGoogle Scholar
  42. Wang, Z., Wu, G., & He, C. (2009). Ion-imprinted thiol-functionalized silica gel sorbent for selective separation of mercury ions. Microchimica Acta, 165, 151–157.CrossRefGoogle Scholar
  43. Wu, G., Wang, Z., Wang, J., & He, C. (2007). Hierarchically imprinted organic–inorganic hybrid sorbent for selective separation of mercury ion from aqueous solution. Analytica Chimica Acta, 582, 304–310.CrossRefGoogle Scholar
  44. Xua, S., Chen, L., Li, J., Guan, Y., & Lu, H. (2012). Novel Hg2+-imprinted polymers based on thymine–Hg2+–thymine interaction for highly selective preconcentration of Hg2+ in water samples. Journal of Hazardous Materials, 237–238, 347–354.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mahmoud Roushani
    • 1
  • Shahryar Abbasi
    • 1
  • Hossein Khani
    • 1
  1. 1.Department of ChemistryIlam UniversityIlamIran

Personalised recommendations