Skip to main content

Advertisement

Log in

Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study of changes and destruction rate in the previous years as well as the possibility of prediction of these changes in the following years has a key role in optimal planning, controlling, and restricting non-normative changes in the future. This research was approached to detecting land use/cover changes (1985–2007) and to forecast the changes in the future (2021) use of multitemporal satellite imagery in semi-arid area in western Iran. A supervised classification of multilayer perceptron (MLP) was applied for detecting land use changes. The study area was classified into five classes, those of forest, rangeland, agriculture, residential, and barren lands. The change detection analysis indicated a decreasing trend in forest cover by 30.42 %, while other land uses were increased during 1985 to 2007. The land use changes were predicted using Markov chain model for 2021. The model was calibrated by comparing the simulated map with the real detected classes of land cover in 2007. Then, for further model processing, an acceptable accuracy at 83 % was achieved between them. Finally, land use changes were predicted by using transition matrix derived from calibrated approach. The findings of this study demonstrate a rapid change in land use/cover for the coming years. Transforming the forest into other land uses especially rangeland and cropland is the main land cover changes in the future. Therefore, the planning of protection and restoration of forest cover should be an essential program for decision-makers in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal, C., Green, G. M., Grove, J. M., Evan, T. P., & Schweik, C. M. (2002). A review and assessment of land use change models: dynamics of space, time and human choice, USDA (Forest Services). Technical Report, NE-297.

  • An, S., Zheng, F., Zhang, F., Van Pelt, S., Hamer, U., & Makeschin, F. (2008). Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena, 75(3), 248–256.

    Article  Google Scholar 

  • Armenteras, D., Gast, F., & Villareal, H. (2003). Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation, 113(2), 245–256.

    Article  Google Scholar 

  • Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2(2), 111–133.

  • Bell, E. J. (1974). Markov analysis of land use change-an application of stochastic processes to remotely sensed data. Socio-Economic Planning Sciences, 8(6), 311–316.

    Article  Google Scholar 

  • Brown, D. G., Pijanowski, B. C., & Duh, J. D. (2000). Modeling the relationships between land use and land cover on private lands in the upper Midwest, USA. Journal of Environmental Management, 59(4), 247–263.

    Article  Google Scholar 

  • Burnham, B. O. (1973). Markov intertemporal land use simulation model. Southern Journal of Agricultural Economics, 5(01), 253–258.

    Google Scholar 

  • Dadras, M., Mohd Shafri, H. Z., Ahmad, N., Pradhan, B., & Safarpour, S. (2014). Land use/cover change detection and urban sprawl analysis in Bandar Abbas City. Iran. The Scientific World Journal, 2014.

  • Dzieszko, P. (2014). Land-cover modelling using corine land cover data and multi-layer perceptron. Quaestiones Geographicae, 33(1), 5–22.

    Article  Google Scholar 

  • Fan, F., Wang, Y., & Wang, Z. (2008). Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environmental Monitoring and Assessment, 137(1–3), 127–147.

    Article  Google Scholar 

  • Faramarzi, M., Kesting, S., Isselstein, J., & Wrage, N. (2010). Rangeland condition in relation to environmental variables, grazing intensity and livestock owners’ perceptions in semi-arid rangeland in western Iran. The Rangeland Journal, 32(4), 367–377.

    Article  Google Scholar 

  • Gilks, W. R. (2005). Markov chain Monte Carlo. Ltd:John Wiley & Sons.

    Book  Google Scholar 

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8(4), 345–360.

    Article  Google Scholar 

  • Hathout, S. (2002). The use of GIS for monitoring and predicting urban growth in east and west St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management, 66(3), 229–238.

    Article  CAS  Google Scholar 

  • Jenerette, G. D., & Wu, J. (2001). Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA. Landscape Ecology, 16(7), 611–626.

    Article  Google Scholar 

  • Jokar Arsanjani, J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Article  Google Scholar 

  • Khormali, F., & Nabiollahi, K. (2009). Degradation of mollisols in western Iran as affected by land use change. Journal of Agricultural Science and Technology, 11, 363–374.

    Google Scholar 

  • Kumar, U., Kerle, N., Punia, M., & Ramachandra, T. V. (2010). Mining land cover information using multilayer perceptron and decision tree from MODIS data. Journal of the Indian Society of Remote Sensing, 38(4), 592–603.

    Article  Google Scholar 

  • Lemenih, M., Karltun, E., & Olsson, M. (2005). Assessing soil chemical and physical property responses to deforestation and subsequent cultivation in smallholders farming system in Ethiopia. Agriculture, Ecosystems & Environment, 105(1), 373–386.

    Article  CAS  Google Scholar 

  • Mugagga, F., Kakembo, V., & Buyinza, M. (2012). Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena, 90, 39–46.

    Article  Google Scholar 

  • Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151–157.

    Google Scholar 

  • Murthy, C. S., Raju, P. V., Jonna, S., Hakeem, K. A., & Thiruvengadachari, S. (1998). Satellite derived crop calendar for canal operation schedule in Bhadra project command area, India. International Journal of Remote Sensing, 19(15), 2865–2876.

    Article  Google Scholar 

  • Pal, Y., Gilkes, R. J., & Wong, M. T. F. (2001). Soil factors affecting the availability of potassium to plants for western Australian soils: a glasshouse study. Soil Research, 39(3), 611–625.

    Article  CAS  Google Scholar 

  • Pontius, G. R., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19(2), 243–265.

    Article  Google Scholar 

  • Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13(4), 997–1027.

    Article  CAS  Google Scholar 

  • Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms (no. VG-1196-G-8). CORNELL AERONAUTICAL LAB INC BUFFALO NY.

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation (no. In ICS-8506). SCIENCE: California UNIV SAN DIEGO LA JOLLA INST FOR COGNITIVE.

    Google Scholar 

  • Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., & Kaufmann, R. K. (2002). Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23(10), 1985–2004.

    Article  Google Scholar 

  • Turner, B. L., & Meyer, W. B. (1991). Land-use and land cover in global environmental-change-considerations for study. International Social Science Journal, 43(4), 669–679.

    Google Scholar 

  • Vance, C., & Iovanna, R. (2006). Analyzing spatial hierarchies in remotely sensed data: insights from a multilevel model of tropical deforestation. Land Use Policy, 23(3), 226–236.

    Article  Google Scholar 

  • Veldkamp, A., & Fresco, L. O. (1996). CLUE: a conceptual model to study the conversion of land use and its effects. Ecological Modelling, 85(2), 253–270.

    Article  Google Scholar 

  • Venkatesh, Y. V., & KumarRaja, S. (2003). On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recognition, 36(9), 2161–2175.

    Article  Google Scholar 

  • Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64(3), 273–284.

    Article  Google Scholar 

  • Wu, Q., Li, H. Q., Wang, R. S., Paulussen, J., He, Y., Wang, M., Wang, B. H., & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78(4), 322–333.

    Article  Google Scholar 

  • Yuan, F., Bauer, M. E., Heinert, N. J., & Holden, G. R. (2005). Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+ data. Geocarto International, 20(2), 5–13.

    Article  Google Scholar 

  • Zhang, R., Tang, C., Ma, S., Yuan, H., Gao, L., & Fan, W. (2011). Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain, China. Mathematical and Computer Modelling, 54(3), 924–930.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzban Faramarzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathizad, H., Rostami, N. & Faramarzi, M. Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environ Monit Assess 187, 629 (2015). https://doi.org/10.1007/s10661-015-4805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4805-y

Keywords

Navigation