Advertisement

Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry

  • Rui M. de CarvalhoJr.
  • Jéssica A. dos Santos
  • Jessee A. S. Silva
  • Thiago G. do Prado
  • Adriel Ferreira da Fonseca
  • Eduardo S. Chaves
  • Vera L. A. Frescura
Article

Abstract

The concentration of metals in Brazilian soil under no-tillage (NT) and an area under native vegetation (NV) was determined by inductively coupled plasma mass spectrometry. The applied method was based on microwave-assisted acid digestion using HNO3, HCl, H2O2, and HF. The accuracy of the method was evaluated by analyzing two certified reference materials (BCR-142 and RS-3). The relative standard deviation for all target elements was below 8 % indicating an adequate precision and the limit of detection ranged from 0.03 μg g−1 (Cd) to 24.0 μg g−1 (Fe). The concentrations of Al, As, Ba, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Sr, and Zn in the different layers (0–10, 10–20, 20–40, and 40–60 cm) were determined in two types of soils, located in Paraná State in Brazil. The soil layers analysis revealed a different behavior of metals concentrations in soil samples under NT and NV. The obtained results showed a clear impact of anthropogenic action with respect to specific metals due to many years of uncontrolled application rates of limestone and phosphate fertilizers.

Keywords

Brazilian soils Soil Metal ICP-MS 

References

  1. Álvarez, M. A., & Garrillo, G. (2012). Simultaneous determination of arsenic, cadmium, copper, chromium, nickel, lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectroscopy (ET AAS). Talanta, 97, 505–512.CrossRefGoogle Scholar
  2. Biondi, C. M., Nascimento, C. W. A., Neta, A. B. F., & Ribeiro, M. R. (2011). Teores de Fe, Mn, Zn, Cu, Ni e Co em solos de referência de Pernambuco. Revista Brasileira de Ciência do Solo, 35, 1057–1066.CrossRefGoogle Scholar
  3. Brinza, L., Quinn, P. D., Schofield, P. F., Mosselmans, J. F. W., & Hodson, M. E. (2013). Incorporation of strontium in earthworm-secreted calcium carbonate granules produced in strontium-amended and strontium-bearing soil. Geochimica Cosmochimica Acta, 113, 21–37.CrossRefGoogle Scholar
  4. Chand, V., & Prasad, S. (2013). ICP-OES assessment of heavy metal contamination in tropical marine sediments: a comparative study of two digestion techniques. Microchemical Journal, 111, 53–61.CrossRefGoogle Scholar
  5. Conselho de Política Ambiental (COPAM). (2011). Normativa n° 166 de 29 de junho de. Available via DIALOG. http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414. Accessed 24 Feb 2015.
  6. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) (1999) Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro.Google Scholar
  7. Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone. Iran Catena, 121, 88–98.CrossRefGoogle Scholar
  8. Food and agriculture organization of the United Nations (FAO) (1980) Mancozeb, Rome.Google Scholar
  9. Frentiu, T., Mihaltan, A. I., Senila, M., Darvasi, E., Ponta, M., Frentiu, M., & Pintican, B. P. (2013). New method for mercury determination in microwave digested soil samples based on cold vapor capacitively coupled plasma microtorch optical emission spectrometry: Comparison with atomic fluorescence spectrometry. Microchemical Journal, 110, 545–552.CrossRefGoogle Scholar
  10. Heininger, P., Pelzer, J., Henrion, R., & Henrion, G. (1998). Results of a complex round robin test with four river sediments. Fresenius Journal of Analytical Chemistry, 360, 344–347.CrossRefGoogle Scholar
  11. Janotková, I., Prokeš, L., Vaculovič, T., Holá, M., Pinkas, J., Steffan, I., Kubáň, V., & Kanický, V. (2013). Comparison of inductively coupled plasma optical emission spectrometry, energy dispersive X-ray fluorescence spectrometry and laser ablation inductively coupled plasma mass spectrometry in the elemental analysis of agricultural soils. Journal of Analytical Atomic Spectrometry, 28, 1940–1948.CrossRefGoogle Scholar
  12. Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma, 221–222, 82–90.CrossRefGoogle Scholar
  13. Krishna, M. V. B., Chandrasekaran, K., Venkateswarlu, G., & Karunasagar, D. (2012). A cost-effective and rapid microwave-assisted acid extraction method for the multi-elemental analysis of sediments by ICP-AES and ICP-MS. Analytical Methods, 4, 3290–3299.CrossRefGoogle Scholar
  14. Liu, W. J., Liu, C. Q., Zhao, Z. Q., Xu, Z.-F., Liang, C. S., Li, L. F., & Feng, J.-Y. (2013). Elemental and strontium isotopic geochemistry of the soil profiles developed on limestone and sandstone in karstic terrain on Yunnan-Guizhou Plateau, China: implications for chemical weathering and parent materials. Journal of Asian Earth Sciences, 67–68, 138–152.CrossRefGoogle Scholar
  15. Llugany, M., Poschenrieder, C., & Barceló, J. (2000). Assessment of barium toxicity in bush beans. Archives of Environment Contamination and Toxicology, 39, 440–444.CrossRefGoogle Scholar
  16. Malavolta, E. (2006). Manual de nutrição mineral de plantas. São Paulo: Agronômica Ceres.Google Scholar
  17. Marin, B., Chopin, E. I. B., Jupinet, B., & Gauthier, D. (2008). Comparison of microwave-assisted digestion procedures for total trace element content determination in calcareous soils. Talanta, 77, 282–288.CrossRefGoogle Scholar
  18. McLaughlin, J. W., Calhoon, E. B. W., Gale, M. R., Jurgensen, M. F., & Trettin, C. C. (2011). Biogeochemical cycling and chemical fluxes in a managed northern forested wetland, Michigan USA. Forest Ecology Management, 261, 649–661.CrossRefGoogle Scholar
  19. Melaku, S., Dams, R., & Moens, L. (2005). Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: Microwave acid digestion versus aqua regia extraction. Analytica Chimica Acta, 543, 117–123.CrossRefGoogle Scholar
  20. Mineropar (2001). Minerais do Paraná S/A. Atlas Geológico do Estado do Paraná. Curitiba: Secretaria de Estado da Indústria, Comércio e Turismo, p. 125.Google Scholar
  21. Nascimento, C. W. A., Accioly, A. M., & Biondi, C. M. (2009). Fitoextração de metais pesados em solos contaminados: avanços e perspectivas. Revista Brasileira de Ciência do Solo, 6, 461–497.Google Scholar
  22. Picoloto, R. S., Wiltsche, H., Knapp, G., Mello, P. A., Barin, J. S., & Flores, E. M. M. (2013). Determination of inorganic pollutants in soil after volatilization using microwave-induced combustion Original. Spectrochimica Acta, Part B, 86, 123–130.CrossRefGoogle Scholar
  23. Roje, V. (2011). Fast method of multi-elemental analysis of stream sediment samples by inductively coupled plasma-mass spectrometry (ICP-MS) with prior single-step microwave-assisted digestion. Journal of the Brazilian Chemical Society, 22, 532–539.CrossRefGoogle Scholar
  24. Sandstorm, B. (2001). Micronutrients interactions: effects on absorption and bioavailability. British Journal of Nutrition, 85, 181–185.CrossRefGoogle Scholar
  25. Silva, Y. J. A. B., Nascimento, C. W. A., & Biondi, C. M. (2014). Comparison of US EPA digestion methods to heavy metals in soil samples. Environmental Monitoring and Assessment, 186, 47–53.CrossRefGoogle Scholar
  26. Sociedade Brasileira de Ciência do Solo (SBCS) .(2013). Solos contaminados no Brasil: O desafio de definir valores de referência. Boletim Informativo ISSN 1981-979X, 38, (01), Janeiro - Abril de 2013.Google Scholar
  27. Soodan, R. K., Pakade, Y. B., Nagpal, A., & Katnoria, J. K. (2014). Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review. Talanta, 125, 405–410.CrossRefGoogle Scholar
  28. Souza, S. O., Costa, S. S. L., Santos, D. M., Pinto, J. S., Garcia, C. A. B., Alves, J. P. H., & Araujo, R. G. O. (2014). Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B, 96, 1–7.CrossRefGoogle Scholar
  29. Uchida, S., Tagami, K., & Tabei, K. (2005). Comparison of alkaline fusion and acid digestion methods for the determination of rhenium in rock and soil samples by ICP-MS. Analytica Chimica Acta, 535, 317–323.CrossRefGoogle Scholar
  30. Wang, Y., Kanipayor, R., & Brindle, I. D. (2014). Rapid high-performance sample digestion for ICP determination by ColdBlock™ digestion: part 1 environmental samples. Journal of Analytical Atomic Spectrometry, 29, 162–168.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rui M. de CarvalhoJr.
    • 1
  • Jéssica A. dos Santos
    • 2
  • Jessee A. S. Silva
    • 1
  • Thiago G. do Prado
    • 3
  • Adriel Ferreira da Fonseca
    • 2
  • Eduardo S. Chaves
    • 3
  • Vera L. A. Frescura
    • 1
  1. 1.Federal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Soil Science and Agricultural EngineeringState University of Ponta GrossaPonta GrossaBrazil
  3. 3.Federal University of Technology – ParanáPonta GrossaBrazil

Personalised recommendations