Cempedak durian as a potential biosorbent for the removal of Brilliant Green dye from aqueous solution: equilibrium, thermodynamics and kinetics studies

  • Muhammad Khairud Dahri
  • Linda B. L. Lim
  • Chan Chin Mei


Cempedak durian peel (CDP) was used to remove Brilliant Green (BG) dye from aqueous solution. The adsorption of BG onto CDP was studied as functions of contact time, pH, temperature, ionic strength and initial concentration. In order to understand the adsorption process and its mechanisms, adsorption isotherm and kinetics models were used. The experiments were done under optimized 2-h contact time and ambient pH. Adsorption study showed that the Langmuir model best fitted with experimental data, and the maximum adsorption capacity was determined as 0.203 mmol g−1 (97.995 mg g−1). Adsorption kinetics followed the pseudo 2nd order model, and intraparticle diffusion is involved but not as the rate-limiting step while Boyd model suggests that film diffusion might be in control of the adsorption process. Fourier transform infrared (FTIR) analysis showed that OH, C=O, C=C and NH functional groups might be involved in the adsorption of BG onto CDP. Thermodynamic study suggested that the adsorption of BG onto CDP is endothermic with ΔH o value of 12 kJ mol−1 and adsorption is feasible. Regeneration of CDP’s ability to remove BG was also studied using three different washing solutions. NaOH (0.1 M) was not only sufficient to be used to regenerate CDP’s ability to remove BG but also improved its adsorption capability.


Water remediation Artocarpus Brilliant Green Basic dye Biosorption Wastewater treatment 



The authors would like to thank the Government of Brunei Darussalam and Universiti Brunei Darussalam for their support.


  1. Abdallah, R., & Taha, S. (2012). Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chemical Engineering Journal, 195, 69–76. doi: 10.1016/j.cej.2012.04.066.CrossRefGoogle Scholar
  2. Abdolali, A., Guo, W. S., Ngo, H. H., Chen, S. S., Nguyen, N. C., & Tung, K. L. (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresource Technology, 160, 57–66. doi: 10.1016/j.biortech.2013.12.037.CrossRefGoogle Scholar
  3. Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical Engineering Journal, 157(2–3), 277–296. doi: 10.1016/j.cej.2010.01.007.CrossRefGoogle Scholar
  4. Boyd, G. E., Adamson, A. W., & Myers, L. S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites.; kinetics. Journal of the American Chemical Society, 69(11), 2836–2848. doi: 10.1021/ja01203a066.CrossRefGoogle Scholar
  5. Bulut, Y., & Tez, Z. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19(2), 160–166. doi: 10.1016/S1001-0742(07)60026-6.CrossRefGoogle Scholar
  6. Chieng, H. I., Zehra, T., Lim, L. B. L., Priyantha, N., & Tennakoon, D. T. B. (2014). Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution. Environmental Earth Sciences, 72(7), 2263–2277. doi: 10.1007/s12665-014-3135-7.CrossRefGoogle Scholar
  7. Chieng, H. I., Priyantha, N., & Lim, L. B. L. (2015). Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 5(44), 34603–34615. doi: 10.1039/C5RA01572C.CrossRefGoogle Scholar
  8. Chowdhury, S., Misra, R., Kushwaha, P., & Das, P. (2011). Optimum sorption isotherm by linear and nonlinear methods for Safranin onto alkali-treated rice husk. Bioremediation Journal, 15(2), 77. doi: 10.1080/10889868.2011.570282.CrossRefGoogle Scholar
  9. Dahri, M. K., Kooh, M. R. R., & Lim, L. B. L. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. doi: 10.1016/j.jece.2014.07.008.CrossRefGoogle Scholar
  10. Daraei, H., Mittal, A., Mittal, J., Kamali, H. (2013). Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & theoretical approaches. Desalination and Water Treatment, 1–9, doi: 10.1080/19443994.2013.787374.
  11. Dileepa Chathuranga, P. K., Priyantha, N., Iqbal, S., & Mohomed Iqbal, M. C. (2013). Biosorption of Cr(III) and Cr(VI) species from aqueous solution by Cabomba caroliniana: kinetic and equilibrium study. Environmental Earth Sciences, 70(2), 661–671. doi: 10.1007/s12665-012-2150-9.CrossRefGoogle Scholar
  12. Dubinin, M. M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews, 60(2), 235–241. doi: 10.1021/cr60204a006.CrossRefGoogle Scholar
  13. Farhan, A. M., Al-Dujaili, A. H., & Awwad, A. M. (2013). Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carica leaves. International Journal of Industrial Chemistry, 4(1), 1–8. doi: 10.1186/2228-5547-4-24.CrossRefGoogle Scholar
  14. Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2012). Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresource Technology, 106, 55. doi: 10.1016/j.biortech.2011.12.003.CrossRefGoogle Scholar
  15. Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.Google Scholar
  16. Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168(2–3), 1070–1081. doi: 10.1016/j.jhazmat.2009.02.155.CrossRefGoogle Scholar
  17. Germán-Heins, J., & Flury, M. (2000). Sorption of Brilliant Blue FCF in soils as affected by pH and ionic strength. Geoderma, 97(1–2), 87–101. doi: 10.1016/S0016-7061(00)00027-6.CrossRefGoogle Scholar
  18. Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, 135(1–3), 264–273. doi: 10.1016/j.jhazmat.2005.11.062.CrossRefGoogle Scholar
  19. Hameed, B. H. (2009). Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. Journal of Hazardous Materials, 162(1), 344–350. doi: 10.1016/j.jhazmat.2008.05.045.CrossRefGoogle Scholar
  20. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. doi: 10.1016/S0032-9592(98)00112-5.CrossRefGoogle Scholar
  21. Ho, Y. S., & Wang, C. C. (2008). Sorption equilibrium of mercury onto ground-up tree fern. Journal of Hazardous Materials, 158(1–3), 398–404. doi: 10.1016/j.jhazmat.2007.12.030.CrossRefGoogle Scholar
  22. Karaoğlu, M. H., Doğan, M., & Alkan, M. (2010). Kinetic analysis of reactive blue 221 adsorption on kaolinite. Desalination, 256(1–3), 154–165. doi: 10.1016/j.desal.2010.01.021.CrossRefGoogle Scholar
  23. Kismir, Y., & Aroguz, A. Z. (2011). Adsorption characteristics of the hazardous dye Brilliant Green on Saklıkent mud. Chemical Engineering Journal, 172(1), 199–206. doi: 10.1016/j.cej.2011.05.090.CrossRefGoogle Scholar
  24. Kooh, M., Lim, L. L., Dahri, M., Lim, L., & Sarath Bandara, J. M. R. (2015a). Azolla pinnata: an efficient low cost material for removal of methyl violet 2B by using adsorption method. Waste and Biomass Valorization, 6(4), 547–559. doi: 10.1007/s12649-015-9369-0.CrossRefGoogle Scholar
  25. Kooh, M. R. R., Lim, L. B. L., Lim, L. H., Bandara, J. M. R. S. (2015b). Batch adsorption studies on the removal of malachite green from water by chemically modified Azolla pinnata. Desalination and Water Treatment, 1–15, doi: 10.1080/19443994.2015.1065450.
  26. Kumar, R., & Barakat, M. A. (2013). Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chemical Engineering Journal, 226, 377–383. doi: 10.1016/j.cej.2013.04.063.CrossRefGoogle Scholar
  27. Kumar, D., & Gaur, J. P. (2011). Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresource Technology, 102(3), 2529. doi: 10.1016/j.biortech.2010.11.061.CrossRefGoogle Scholar
  28. Lafi, R., ben Fradj, A., Hafiane, A., & Hameed, B. H. (2014). Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean Journal of Chemical Engineering, 31(12), 2198–2206. doi: 10.1007/s11814-014-0171-7.CrossRefGoogle Scholar
  29. Lagergren, S. (1898). About the theory of so called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1–39.Google Scholar
  30. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295. doi: 10.1021/ja02254a006.CrossRefGoogle Scholar
  31. Li, G., Zhang, D., Li, Q., & Chen, G. (2014). Effects of pH on isotherm modeling and cation competition for Cd(II) and Cu(II) biosorption on Myriophyllum spicatum from aqueous solutions. Environmental Earth Sciences, 72(11), 4237–4247. doi: 10.1007/s12665-014-3319-1.CrossRefGoogle Scholar
  32. Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., & Dahri, M. K. (2012). Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus. Environmental Science and Pollution Research International, 19(8), 3250–3256. doi: 10.1007/s11356-012-0831-2.CrossRefGoogle Scholar
  33. Lim, L. B. L., Priyantha, N., Tennakoon, D. T. B., Chieng, H. I., Dahri, M. K., & Suklueng, M. (2013). Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2013.12.018.Google Scholar
  34. Lim, L. B. L., Priyantha, N., Chieng, H. I., Dahri, M. K., Tennakoon, D. T. B., Zehra, T., & Suklueng, M. (2015). Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment, 53(4), 964–975. doi: 10.1080/19443994.2013.852136.Google Scholar
  35. Liu, Y., Luo, L., Chen, G. L., Xie, M. J., & Yu, Z. L. (2010). Adsorption of lead ions on ground tyre rubber grafted with maleic anhydride via surface-initiated ATRP polymerization. Iranian Polymer Journal, 19(3), 207–218.Google Scholar
  36. Mane, V. S., & Babu, P. V. V. (2011). Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination, 273(2–3), 321–329. doi: 10.1016/j.desal.2011.01.049.CrossRefGoogle Scholar
  37. McKay, G., Blair, H. S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27(8), 3043. doi: 10.1002/app.1982.070270827.CrossRefGoogle Scholar
  38. Nadeem, R., Ansari, T. M., & Khalid, A. M. (2008). Fourier transform infrared spectroscopic characterization and optimization of Pb(II) biosorption by fish (Labeo rohita) scales. Journal of Hazardous Materials, 156(1–3), 64–73. doi: 10.1016/j.jhazmat.2007.11.124.CrossRefGoogle Scholar
  39. Noroozi, B., Sorial, G. A., Bahrami, H., & Arami, M. (2008). Adsorption of binary mixtures of cationic dyes. Dyes Pigment, 76(3), 784–791. doi: 10.1016/j.dyepig.2007.02.003.CrossRefGoogle Scholar
  40. Ofomaja, A. E., & Ho, Y.-S. (2008). Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresource Technology, 99(13), 5411–5417. doi: 10.1016/j.biortech.2007.11.018.CrossRefGoogle Scholar
  41. Panda, G. C., Das, S. K., Bandopadhyay, T. S., & Guha, A. K. (2007). Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloid Surface B, 57(2), 135–142. doi: 10.1016/j.colsurfb.2007.01.022.CrossRefGoogle Scholar
  42. Pavia, D. L., Lampman, G. M., & Kriz, G. S. (1996). Introduction to spectroscopy. Florida: Saunders College Publishing.Google Scholar
  43. Priyantha, N., Lim, L. B. L., Tennakoon, D. T. B., Mansor, N. H. M., Dahri, M. K., & Chieng, H. I. (2013). Breadfruit (Artocarpus altilis) waste for bioremediation of Cu (II) and Cd(II) ions from aqueous medium. Ceylon Journal of Science (Physical Sciences), 17, 19–29.Google Scholar
  44. Rajaram, R., Banu, J. S., & Mathivanan, K. (2013). Biosorption of Cu (II) ions by indigenous copper-resistant bacteria isolated from polluted coastal environment. Toxicological and Environmental Chemistry, 95(4), 590–604. doi: 10.1080/02772248.2013.801979.CrossRefGoogle Scholar
  45. Rehman, M. S. U., Munir, M., Ashfaq, M., Rashid, N., Nazar, M. F., Danish, M., & Han, J.-I. (2013). Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chemical Engineering Journal, 228, 54–62. doi: 10.1016/j.cej.2013.04.094.CrossRefGoogle Scholar
  46. Rodríguez, I. A., Juárez, V. M. M., González, J. F. C., & Zárate, M. D. G. M. (2013). Biosorption of arsenic(III) from aqueous solutions by modified fungal biomass of Paecilomyces sp. Bioinorganic Chemistry and Applications. doi: 10.1155/2013/376780.Google Scholar
  47. Shirsath, S. R., Patil, A. P., Patil, R., Naik, J. B., Gogate, P. R., & Sonawane, S. H. (2013). Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrasonics Sonochemistry, 20(3), 914–923. doi: 10.1016/j.ultsonch.2012.11.010.CrossRefGoogle Scholar
  48. Sips, R. (1948). Combined form of Langmuir and Freundlich equations. Journal of Chemical Physics, 16, 490–495.CrossRefGoogle Scholar
  49. Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2013). Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science, 409, 112–122. doi: 10.1016/j.jcis.2013.07.052.CrossRefGoogle Scholar
  50. Tempkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physiochimica USSR, 12, 327–356.Google Scholar
  51. Tsai, S. C., & Juang, K. W. (2000). Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. Journal of Radioanalytical and Nuclear Chemistry, 243(3), 741–746. doi: 10.1023/A:1010694910170.CrossRefGoogle Scholar
  52. Vilar, V. J. P., Botelho, C. M. S., & Boaventura, R. A. R. (2005). Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochemistry, 40(10), 3267–3275. doi: 10.1016/j.procbio.2005.03.023.CrossRefGoogle Scholar
  53. Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101(14), 5070–5075. doi: 10.1016/j.biortech.2010.01.121.CrossRefGoogle Scholar
  54. Weber, W., & Morris, J. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Muhammad Khairud Dahri
    • 1
  • Linda B. L. Lim
    • 1
  • Chan Chin Mei
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam

Personalised recommendations