Advertisement

Long-term monitoring of western aspen—lessons learned

  • E. K. Strand
  • S. C. Bunting
  • L. A. Starcevich
  • M. T. Nahorniak
  • G. Dicus
  • L. K. Garrett
Article

Abstract

Aspen woodland is an important ecosystem in the western United States. Aspen is currently declining in western mountains; stressors include conifer expansion due to fire suppression, drought, disease, heavy wildlife and livestock use, and human development. Forecasting of tree species distributions under future climate scenarios predicts severe losses of western aspen within the next 50 years. As a result, aspen has been selected as one of 14 vital signs for long-term monitoring by the National Park Service Upper Columbia Basin Network. This article describes the development of a monitoring protocol for aspen including inventory mapping, selection of sampling locations, statistical considerations, a method for accounting for spatial dependence, field sampling strategies, and data management. We emphasize the importance of collecting pilot data for use in statistical power analysis and semi-variogram analysis prior to protocol implementation. Given the spatial and temporal variability within aspen stem size classes, we recommend implementing permanent plots that are distributed spatially within and among stands. Because of our careful statistical design, we were able to detect change between sampling periods with desired confidence and power. Engaging a protocol development and implementation team with necessary and complementary knowledge and skills is critical for success. Besides the project leader, we engaged field sampling personnel, GIS specialists, statisticians, and a data management specialist. We underline the importance of frequent communication with park personnel and network coordinators.

Keywords

Aspen Long-term monitoring National Park Service CIRO CRMO Populus tremuloides Western USA 

Notes

Acknowledgments

Funding for this project was provided through the National Park Service Natural Resource Challenge and the Service-wide Inventory and Monitoring Program. We thank Dr. Kirk Steinhorst for statistical expertise and coordination and Gina Wilson for image processing of City of Rocks’ aerial photos. We thank the staff at the City of Rocks National Monument and Craters of the Moon National Monument and Preserve for contributions and critique of the aspen monitoring protocol and annual reports and for assistance during field reconnaissance. Thank you to the field assistants and summer interns that worked with us during the summers 2006–2012, you contributed immensely to field data collection, data recording, and fun.

References

  1. Anderegg, W. R., Berry, J. A., Smith, D. D., Sperry, J. S., Anderegg, L. D., & Field, C. B. (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences, 109(1), 233–237.CrossRefGoogle Scholar
  2. Archaux, F., & Bergès, L. (2008). Optimising vegetation monitoring. A case study in a french lowland forest. Environmental Monitoring and Assessment, 141(1–3), 19–25.CrossRefGoogle Scholar
  3. Bartos, D. L. (2001). Landscape dynamics of aspen and conifer forests. In W. D. Shepperd, D. Binkley, D. L. Bartos, T. J. Stohlgren, & L. G. Eskew (Eds.), Sustaining aspen in western landscapes: symposium proceedings; 13–15 June 2000; Grand Junction, CO (USDA Forest Service Proceedings RMRS-P-18) (pp. 5–14). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  4. Bartos, D. L., & Campbell, R. B. (1998). Decline of quaking aspen in the interior West—examples from Utah. Rangelands, 20(1), 17–24.Google Scholar
  5. Beck, J. L., Peek, J. M., & Strand, E. K. (2006). Estimates of elk summer range nutritional carrying capacity constrained by probabilities of habitat selection. Journal of Wildlife Management, 70(1), 283–294.CrossRefGoogle Scholar
  6. Beck, J. L., Dauwalter, D. C., Gerow, K. G., & Hayward, G. D. (2010). Design to monitor trend in abundance and presence of American beaver (Castor canadensis) at the national forest scale. Environmental Monitoring and Assessment, 164, 463–479.CrossRefGoogle Scholar
  7. Bonham, C. D. (1989). Measurements for terrestrial vegetation. New York City: Wiley.Google Scholar
  8. Brandt, J. P., Cerezke, H. F., Mallett, K. I., Volney, W. J. A., & Weber, J. D. (2003). Factors affecting trembling aspen (Populus tremuloides Michx.) health in the boreal forest of Alberta, Saskatchewan, and Manitoba, Canada. Forest Ecology and Management, 178(3), 287–300.CrossRefGoogle Scholar
  9. Campbell, R. B., & Bartos, D. L. (2001). Aspen ecosystems: objectives for sustaining biodiversity. In W. D. Shepperd, D. Binkley, D. L. Bartos, T. J. Stohlgren, & L. G. Eskew (Eds.), Sustaining aspen in western landscapes: symposium proceedings; 13–15 June 2000; grand junction, CO (USDA forest service proceedings RMRS-P-18) (pp. 299–307). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  10. Carlsson, A. L. M., Bergfur, J., & Milberg, P. (2005). Comparison of data from two vegetation monitoring methods in semi-natural grasslands. Environmental Monitoring and Assessment, 100(1–3), 235–248.CrossRefGoogle Scholar
  11. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Mahway: Lawrence Erlbaum Associates.Google Scholar
  12. Cressie, N. A. C. (1991). Statistics for spatial data. New York City: Wiley.Google Scholar
  13. Einspahr, D. W., & Winton, L. L. (1976). Genetics of quaking aspen. USDA forest service research paper WO-25. Washington: U.S. Department of Agriculture, U.S. Forest Service.Google Scholar
  14. Elzinga, C. L., Salzer, D. W., Willoughby, J. W., & Gibbs, J. P. (1998). Measuring and monitoring plant populations. Denver: U.S. Department of the Interior, Bureau of Land Management.Google Scholar
  15. Environmental Data Standards Council. (2006). Quality assurance and quality control data standard. Standard No. EX000012.1. http://www.exchangenetwork.net/standards/qa_qc_01_06_2006_final.pdf. Accessed 13 October 2014.
  16. Frey, B. R., Lieffers, V. J., Hogg, E. H., & Landhäusser, S. M. (2004). Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Canadian Journal of Forest Research, 34(7), 1379–1390.CrossRefGoogle Scholar
  17. Garrett, L. K., Rodhouse, T. J., Dicus, G. H., Caudill, C. C., & Shardlow, M. R. (2007). Upper Columbia basin network vital signs monitoring plan, (natural resource report NPS/PWR/UCBN/NRR—2006/001). Fort Collins: National Park Service.Google Scholar
  18. Godínez-Alvarez, H., Herrick, J. E., Mattocks, M., Toledo, D., & Van Zee, J. (2009). Comparison of three vegetation monitoring methods: their relative utility for ecological assessment and monitoring. Ecological Indicators, 9(5), 1001–1008.CrossRefGoogle Scholar
  19. Gotfryd, A., & Hansell, R. I. (1985). The impact of observer bias on multivariate analyses of vegetation structure. Oikos, 45, 223–234.CrossRefGoogle Scholar
  20. Hart, J. H., & Hart, D. L. (2001). Interaction among cervids, fungi, and aspen in northwest Wyoming. In W. D. Shepperd, D. Binkley, D. L. Bartos, T. J. Stohlgren, & L. G. Eskew (Eds.), Sustaining aspen in western landscapes: symposium proceedings; 13–15 June 2000; grand junction, CO (USDA forest service proceedings RMRS-P-18) (pp. 197–205). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  21. Holm, A. M., Burnside, D. G., & Mitchell, A. A. (1987). The development of a system for monitoring trend in range condition in the arid shrublands of Western Australia. The Australian Rangeland Journal, 9(1), 14–20.CrossRefGoogle Scholar
  22. Huang, C. Y., & Anderegg, W. R. (2012). Large drought‐induced aboveground live biomass losses in southern rocky mountain aspen forests. Global Change Biology, 18(3), 1016–1027.CrossRefGoogle Scholar
  23. Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54(2), 187–211.CrossRefGoogle Scholar
  24. Irwin, R. J. (2008). Draft Part B lite QA/QC Review Checklist for Aquatic Vital Sign Monitoring Protocols and SOPs. Fort Collins, CO: National Park Service, Water Resources Division. http://www.nature.nps.gov/water/vitalsigns/assets/docs/PartBLite.pdf. Accessed 13 October 2014.
  25. Jones, B. E., Burton, D., & Tate, K. W. (2005). Effectiveness monitoring of aspen regeneration on managed rangelands. U.S. Department of Agriculture, Forest Service, Pacific Southwest Region.Google Scholar
  26. Jones, B. E., Lile, D. F., & Tate, K. W. (2009). Effects of simulated browsing on aspen regeneration: implications for restoration. Rangeland Ecology and Management, 62(6), 557–563.CrossRefGoogle Scholar
  27. Kay, C. E., & Bartos, D. L. (2000). Ungulate herbivory on Utah aspen: assessment of long-term exclosures. Journal of Range Management, 53(2), 145–153.CrossRefGoogle Scholar
  28. Kaye, M. W., Binkley, D., & Stohlgren, T. J. (2005). Effects of conifers and elk browsing on quaking aspen forests in the central Rocky Mountains, USA. Ecological Applications, 15(4), 1284–1295.CrossRefGoogle Scholar
  29. Kemperman, J. A., & Barnes, B. V. (1976). Clone size in American aspens. Canadian Journal of Botany, 54(22), 2603–2607.CrossRefGoogle Scholar
  30. Kilpatrick, S., Clause, D., & Scott. D. (2003). Aspen response to prescribed fire, mechanical treatments, and ungulate herbivory. In P. N. Omi and. L. A. Joyce, (Eds.), Fire, fuel treatments, and ecological restoration: Conference Proceedings; April 16–18, 2002; Fort Collins, CO (Proceedings RMRS-P-29; pp. 93–102). Fort Collins, CO: U.S. Department of Agriculture, U.S. Forest Service, Rocky Mountain Research Station.Google Scholar
  31. Legg, C. J., & Nagy, L. (2006). Why most conservation monitoring is, but need not be, a waste of time. Journal of Environmental Management, 78(2), 194–199.CrossRefGoogle Scholar
  32. McCune, B., & Grace, J. B. (2002). Analysis of Ecological Communities. MjM Software, Gleneden Beach, Oregon, USA. p. 304. www.pcord.com. Accessed 02 July 2015.
  33. McDonough, W. T. (1985). Sexual reproduction, seeds and seedlings. In N. V. DeByle & R. P. Winokur (Eds.), Aspen: Ecology and management in the western United States (General Technical Report RM-119) (pp. 25–28). Fort Collins: U.S. Department of Agriculture, U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station.Google Scholar
  34. Milberg, P., Bergstedt, J., Fridman, J., Odell, G., & Westerberg, L. (2008). Observer bias and random variation in vegetation monitoring data. Journal of Vegetation Science, 19(5), 633–644.CrossRefGoogle Scholar
  35. Miller, R. F., Bates, J. D., Svejcar, T. J., Pierson, F. B., & Eddleman, L. E. (2005). Biology, ecology, and management of western juniper (Juniperus occidentalis) (Technical Bulletin 152). Corvallis: Agricultural Experiment Station, Oregon State University.Google Scholar
  36. Mitton, J. B., & Grant, M. C. (1996). Genetic variation and the natural history of quaking aspen. Bioscience, 46(1), 25–31.CrossRefGoogle Scholar
  37. Mock, K. E., Rowe, C. A., Hooten, M. B., Dewoody, J., & Hipkins, V. D. (2008). Clonal dynamics in western North American aspen (Populus tremuloides). Molecular Ecology, 17(22), 4827–4844.CrossRefGoogle Scholar
  38. Mueggler, W. F. (1989). Age distribution and reproduction of intermountain aspen stands. Western Journal of Applied Forestry, 4(2), 41–45.Google Scholar
  39. Noss, R. F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4(4), 355–364.CrossRefGoogle Scholar
  40. Oakley, K. L., Thomas, L. P., & Fancy, S. G. (2003). Guidelines for long-term monitoring protocols. Wildlife Society Bulletin, 31(4), 1000–1003.Google Scholar
  41. Perala, D. A. (1990). Populus tremuloides. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America: 2. Hardwoods; agriculture handbook 654 (pp. 555–569). Washington: U.S. Department of Agriculture, U.S. Forest Service.Google Scholar
  42. Rehfeldt, G. E., Ferguson, D. E., & Crookston, N. L. (2009). Aspen, climate, and sudden decline in western USA. Forest Ecology and Management, 258(11), 2353–2364.CrossRefGoogle Scholar
  43. Rogers, P. C., Leffler, A. J., & Ryel, R. J. (2010). Landscape assessment of a stable aspen community in southern Utah, USA. Forest Ecology and Management, 259(3), 487–495.CrossRefGoogle Scholar
  44. Romme, W. H. (1982). Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecological Monographs, 52(2), 199–221.CrossRefGoogle Scholar
  45. Romme, W. H., Turner, M. G., Tuskan, G. A., & Reed, R. A. (2005). Establishment, persistence, and growth of aspen (Populus tremuloides) seedlings in Yellowstone National Park. Ecology, 86(2), 404–418.CrossRefGoogle Scholar
  46. Rumble, M. A., Flake, L. D., Mills, T. R., & Dykstra, B. L. (2001). Do pine trees in aspen stands increase bird diversity? In W. D. Shepperd, D. Binkley, D. L. Bartos, T. J. Stohlgren, & L. G. Eskew (Eds.), Sustaining aspen in western landscapes: symposium proceedings; 13–15 June 2000; grand junction, CO (USDA forest service proceedings RMRS-P-18) (pp. 185–191). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.Google Scholar
  47. Shepperd, W. D., Bartos, D. L., & Mata, S. A. (2001). Above-and below-ground effects of aspen clonal regeneration and succession to conifers. Canadian Journal of Forest Research, 31(5), 739–745.CrossRefGoogle Scholar
  48. Software, E. S. R. I. (2012). ArcGIS Desktop v. 9 and 10. Redlands: Environmental Systems Research Inc.Google Scholar
  49. Strand, E. K., Bunting, S. C., Steinhorst, R. K., Garrett, L. K., & Dicus, G. H. (2009). Upper Columbia basin network aspen monitoring protocol: narrative version 1.0 (natural resource report NPS/UCBN/NRR—2009/147). Fort Collins: National Park Service.Google Scholar
  50. van Mantgem, P. J., & Stephenson, N. L. (2007). Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters, 10(10), 909–916.CrossRefGoogle Scholar
  51. van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., et al. (2009). Widespread increase of tree mortality rates in the western United States. Science, 323(5913), 521–524.CrossRefGoogle Scholar
  52. Vittoz, P., & Guisan, A. (2007). How reliable is the monitoring of permanent vegetation plots? A test with multiple observers. Journal of Vegetation Science, 18(3), 413–422.CrossRefGoogle Scholar
  53. West, N. E. (2003). Theoretical underpinnings of rangeland monitoring. Arid Land Research and Management, 17(4), 333–346.CrossRefGoogle Scholar
  54. Wildi, O., Feldmeyer-Christe, E., Ghosh, S., & Zimmerman, N. (2004). A note on vegetation monitoring approaches. Community Ecology, 5(1), 1–5.CrossRefGoogle Scholar
  55. Winternitz, B. L. (1980). Birds in aspen. In R. M. DeGraff & N. G. Tilghman (Eds.), Management of western forests and grasslands for nongame birds (general technical report INT-86) (pp. 247–257). Ogden: U.S. Department of Agriculture, U.S. Forest Service, Intermountain Forest and Range Experiment Station.Google Scholar
  56. Woodley, S. (1993). Monitoring and measuring ecosystem integrity in Canadian national parks. In S. Woodley, J. Kay, & G. Francis (Eds.), Ecological integrity and the management of ecosystems (pp. 155–176). Del Ray Beach: St. Lucie Press.Google Scholar
  57. Worrall, J. J., Egeland, L., Eager, T., Mask, R. A., Johnson, E. W., Kemp, P. A., & Shepperd, W. D. (2008). Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 255(3), 686–696.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Forest, Rangeland, and Fire SciencesUniversity of IdahoMoscowUSA
  2. 2.Consulting BiometricianWestern EcoSystems Technology, Inc.CorvallisUSA
  3. 3.South Fork ResearchAlbanyUSA
  4. 4.Upper Columbia Basin Network Program ManagerNational Park ServiceMoscowUSA
  5. 5.Southeast Region, Inventory and Monitoring ProgramNational Park ServiceAtlantaUSA

Personalised recommendations