Advertisement

Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image segmentation

  • Benjamin P. Neal
  • Tsung-Han Lin
  • Rivah N. Winter
  • Tali Treibitz
  • Oscar Beijbom
  • David Kriegman
  • David I. Kline
  • B. Greg Mitchell
Article

Abstract

Size and growth rates for individual colonies are some of the most essential descriptive parameters for understanding coral communities, which are currently experiencing worldwide declines in health and extent. Accurately measuring coral colony size and changes over multiple years can reveal demographic, growth, or mortality patterns often not apparent from short-term observations and can expose environmental stress responses that may take years to manifest. Describing community size structure can reveal population dynamics patterns, such as periods of failed recruitment or patterns of colony fission, which have implications for the future sustainability of these ecosystems. However, rapidly and non-invasively measuring coral colony sizes in situ remains a difficult task, as three-dimensional underwater digital reconstruction methods are currently not practical for large numbers of colonies. Two-dimensional (2D) planar area measurements from projection of underwater photographs are a practical size proxy, although this method presents operational difficulties in obtaining well-controlled photographs in the highly rugose environment of the coral reef, and requires extensive time for image processing. Here, we present and test the measurement variance for a method of making rapid planar area estimates of small to medium-sized coral colonies using a lightweight monopod image-framing system and a custom semi-automated image segmentation analysis program. This method demonstrated a coefficient of variation of 2.26 % for repeated measurements in realistic ocean conditions, a level of error appropriate for rapid, inexpensive field studies of coral size structure, inferring change in colony size over time, or measuring bleaching or disease extent of large numbers of individual colonies.

Keywords

Coral reefs Colony size Colony growth Size structure Planar area Image segmentation 

Notes

Acknowledgments

This study was supported by a funding from National Science Foundation Cyber Enabled Discovery and Innovation Award # 0941760. We wish to thank the Smithsonian Tropical Research Institute and the staff of the Bocas del Toro field station.

Supplementary material

10661_2015_4690_MOESM1_ESM.docx (834 kb)
Online Supplemental Table 1 (DOC 834 kb)

References

  1. Bak, R. P. M., & Meesters, E. H. (1998). Coral population structure: the hidden information of colony size-frequency distributions. Marine Ecology Progress Series, 162, 301–306.CrossRefGoogle Scholar
  2. Barott, K., Smith, J., Dinsdale, E., Hatay, M., Sandin, S., & Rohwer, F. (2009). Hyperspectral and physiological analyses of coral-algal interactions. [Research Support, Non-U.S. Gov’t]. PloS One, 4(11), e8043. doi: 10.1371/journal.pone.0008043.CrossRefGoogle Scholar
  3. Bongiorni, L., Shafir, S., Angel, D., & Rinkevich, B. (2003). Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment (Vol. 253). Oldendorf, Allemagne:Inter-Research.Google Scholar
  4. Bythell, J., Pan, P., & Lee, J. (2001). Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques. Coral Reefs, 20(3), 193–199.Google Scholar
  5. Cesar, H., Burke, L., & Pet-Soede, L. (2003). The economics of worldwide coral reef degradation.Google Scholar
  6. Cohen, A. C., & Holcomb, M. (2009). Why corals care about ocean acidification: uncovering the mechanism. Oceanography, 22(4), 118–127.CrossRefGoogle Scholar
  7. De’ath, G., Lough, J. M., & Fabricius, K. E. (2009). Declining coral calcification on the Great Barrier Reef. Science, 323(5910), 116–119. doi: 10.1126/science.1165283.CrossRefGoogle Scholar
  8. Edmunds, P. J., & Elahi, R. (2007). The demographics of a 15-year decline in cover of the Caribbean reef coral Montastraea annularis. Ecological Monographs, 77(1), 3–18.CrossRefGoogle Scholar
  9. Elahi, R., & Edmunds, P. J. (2007). Consequences of fission in the coral Siderastrea siderea: growth rates of small colonies and clonal input to population structure. Coral Reefs, 26(2), 271–276. doi: 10.1007/s00338-006-0190-x.CrossRefGoogle Scholar
  10. Gulshan, V., Rother, C., Criminisi, A., Blake, A., & Zisserman, A. Geodesic star convexity for interactive image segmentation. In Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on, 2010 (pp. 3129–3136): IEEE.Google Scholar
  11. Herlan, J., & Lirman, D. Development of a coral nursery program for the threatened coral Acropora cervicornis in Florida. In Proc 11th Int Coral Reef Symp, 2008 (Vol. 24, pp. 1244–1247).Google Scholar
  12. Hill, J., & Wilkinson, C. (2004). Methods for ecological monitoring of coral reefs, a resource for managers. Australian Institute of Marine Science.Google Scholar
  13. Hoegh-Guldberg, O. (1988). A method for determining the surface area of corals. Coral Reefs, 7(3), 113–116. doi: 10.1007/bf00300970.CrossRefGoogle Scholar
  14. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737–1742. doi: 10.1126/science.1152509.CrossRefGoogle Scholar
  15. Holmes, G. (2008). Estimating three-dimensional surface areas on coral reefs. Journal of Experimental Marine Biology and Ecology, 365(1), 67–73. doi: 10.1016/j.jembe.2008.07.045.CrossRefGoogle Scholar
  16. Hughes, T. P. (1984). Population dynamics based on individual size rather than age: a general model with a reef coral example. American Naturalist, 123, 778–795.Google Scholar
  17. Jones, A. M., Cantin, N. E., Berkelmans, R., Sinclair, B., & Negri, A. P. (2008). A 3D modeling method to calculate the surface areas of coral branches. Coral Reefs, 27(3), 521–526.Google Scholar
  18. Knowlton, N., & Jackson, J. B. C. (2008). Shifting baselines, local impacts, and global change on coral reefs. PLoS Biology, 6(2), e54. doi: 10.1371/journal.pbio.0060054.CrossRefGoogle Scholar
  19. Laforsch, C., Christoph, E., Glaser, C., Naumann, M., Wild, C., & Niggl, W. (2008). A precise and non-destructive method to calculate the surface area in living scleractinian corals using X-ray computed tomography and 3D modeling. Coral Reefs, 27(4), 811–820. doi: 10.1007/s00338-008-0405-4.CrossRefGoogle Scholar
  20. Leujak, W., & Ormond, R. F. G. (2007). Comparative accuracy and efficiency of six coral community survey methods. Journal of Experimental Marine Biology and Ecology, 351(1–2), 168–187. doi: 10.1016/j.jembe.2007.06.028.CrossRefGoogle Scholar
  21. Lirman, D., Thyberg, T., Herlan, J., Hill, C., Young-Lahiff, C., Schopmeyer, S., et al. (2010). Propagation of the threatened staghorn coral Acropora cervicornis: methods to minimize the impacts of fragment collection and maximize production. Coral Reefs, 29(3), 729–735.CrossRefGoogle Scholar
  22. Lirman, D., Schopmeyer, S., Galvan, V., Drury, C., Baker, A. C., & Baums, I. B. (2014). Growth dynamics of the threatened Caribbean staghorn coral Acropora cervicornis: influence of host genotype, symbiont identity, colony size, and environmental setting. PloS One. doi: 10.1371/journal.pone.0107253.Google Scholar
  23. Marsh, J. A. (1970). Primary productivity of reef-building calcareous red algae. Ecology, 51(2), 255–263. doi: 10.2307/1933661.CrossRefGoogle Scholar
  24. Miller, M. W., Weil, E., & Szmant, A. M. (2000). Coral recruitment and juvenile mortality as structuring factors for reef benthic communities in Biscayne National Park, USA. Coral Reefs, 19(2), 115–123. doi: 10.1007/s003380000079.CrossRefGoogle Scholar
  25. Naumann, M., Niggl, W., Laforsch, C., Glaser, C., & Wild, C. (2009). Coral surface area quantification–evaluation of established techniques by comparison with computer tomography. Coral Reefs, 28(1), 109–117. doi: 10.1007/s00338-008-0459-3.CrossRefGoogle Scholar
  26. Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., et al. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301(5635), 955–958. doi: 10.1126/science.1085706.CrossRefGoogle Scholar
  27. Rahav, O., Ben-Zion, M., Achituv, Y., & Dubinsky, Z. (1991). A photographic, computerized method for in situ growth measurements in reef-building cnidarians. Coral Reefs, 9(4), 204–204. doi: 10.1007/bf00290422.CrossRefGoogle Scholar
  28. Spencer Davies, P. (1989). Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology, 101(3), 389–395. doi: 10.1007/bf00428135.CrossRefGoogle Scholar
  29. Stimson, J., & Kinzie, R. A. (1991). The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. Journal of Experimental Marine Biology and Ecology, 153(1), 63–74. doi: 10.1016/s0022-0981(05)80006-1.CrossRefGoogle Scholar
  30. Treibitz, T., Schechner, Y. Y., Kunz, C., & Singh, H. (2012). Flat refractive geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 51–65. doi: 10.1109/tpami.2011.105.CrossRefGoogle Scholar
  31. Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O., & Osborn, J. (2010). A comparative study of methods for surface area and three- dimensional shape measurement of coral skeletons. Limnology and Oceanography: Methods, 8, 241–253.Google Scholar
  32. Young, C., Schopmeyer, S., & Lirman, D. (2012). A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bulletin of Marine Science, 88(4), 1075–1098.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Benjamin P. Neal
    • 1
    • 5
  • Tsung-Han Lin
    • 2
  • Rivah N. Winter
    • 3
  • Tali Treibitz
    • 4
  • Oscar Beijbom
    • 2
  • David Kriegman
    • 2
  • David I. Kline
    • 5
  • B. Greg Mitchell
    • 5
  1. 1.Catlin Seaview Survey, Global Change InstituteUniversity of QueenslandSt. LuciaAustralia
  2. 2.Computer Science and Engineering DepartmentUniversity of California San DiegoLa JollaUSA
  3. 3.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  4. 4.Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
  5. 5.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations