Relationship between the elemental composition of stream biofilms and water chemistry—a catchment approach

  • Norbert Kamjunke
  • Margarete Mages
  • Olaf Büttner
  • Hanna Marcus
  • Markus Weitere


As benthic biofilms mediate essential functions in stream ecosystems (e.g., carbon flux, storage of nutrients and other substances), the element-specific regulation of the biofilm composition is of great interest. We tested whether (1) the elemental composition of biofilms is related to that of the water column and (2) there are different accumulation patterns from the dissolved phase (adsorption) and the particulate phase (incorporation of suspended matter). We analysed biomass parameters, nutrients and metals in biofilms and surface waters at 28 sites within a stream network (Bode catchment, Germany). Algal biomass in biofilms was dominated by diatoms. The P/C ratio in biofilms was positively related to total phosphorus of surface water (and to the proportion of agricultural area in the catchment) indicating phosphorus limitation of biofilms, whereas the N/C ratio was not related to nitrate levels of surface water, and neither the P/C nor the N/C ratio to the concentration of dissolved organic carbon (DOC) of surface water. Biofilms were enriched in metals compared to their concentrations in water. The metals in biofilms were positively related to the concentration of dissolved metals in surface water for iron and strontium (but not for manganese, copper, zinc, arsenic or lead) and to the concentrations of particle-associated metals of surface waters for strontium and lead. Manganese and arsenic were the metals with a negative effect on the biomasses of biofilm diatoms and cyanobacteria. Overall, we observed element-specific accumulation patterns in biofilms with selected elements being related to the water column while others were probably subject to biofilm-internal processes.


Nutrients Stoichiometry Heavy metals Total reflection X-ray fluorescence spectrometry (TXRF) Stream biofilms River Bode 



We thank many colleagues for their help during field sampling: S. Bauth, M. Cebula, T. David, H. Goreczka, M. Herzog, A. Hoff, U. Kiewel, B. Kuehn, K. Lerche, M. Mages, M. Schäffer and C. Völkner. A. Hoff, U. Link, B. Keller and M. Wengler contributed to subsequent analyses in the laboratory. The TERENO infrastructure is funded by the Helmholtz Association and the Federal Ministry of Education and Research. Furthermore, we would like to thank Frederic Bartlett for the language corrections.

Supplementary material

10661_2015_4664_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 19 kb)
10661_2015_4664_MOESM2_ESM.docx (26 kb)
ESM 2 (DOCX 23 kb)


  1. Ancion, P.-Y., Lear, G., Dopheide, A., & Lewis, G. D. (2013). Metal concentration in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environmental Pollution, 173, 117–124.CrossRefGoogle Scholar
  2. Bärlocher, F., & Murdoch, J. H. (1989). Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia, 184, 61–67.CrossRefGoogle Scholar
  3. Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hansen, C. M. E. (2003). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426, 439–442.CrossRefGoogle Scholar
  4. Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., & Sabater, F. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1, 95–100.CrossRefGoogle Scholar
  5. Bechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. (2012). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnology and Oceanography, 57, 1544–1554.CrossRefGoogle Scholar
  6. Behra, R., Ruperez, W., Wagne, B., Kistler, D., Sigg, L., Navarro, E., Robinson, C. (2005). Wie wirken sich Metalle auf Algenbiofilme aus? Eawag News: Biofilme 60d: 16–18.Google Scholar
  7. Burns, A., & Walker, K. F. (2000). Biofilms as food for decapods (Atyidae, Palaemonidae) in the River Murray, South Australia. Hydrobiologia, 437, 83–90.CrossRefGoogle Scholar
  8. Campbell, P. G. C., Errecalde, O., Fortin, C., Hiriart-Baer, V. P., & Vigneault, B. (2002). Metal bioavailability to phytoplankton applicability of the biotic ligand model. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 133, 189–206.Google Scholar
  9. DIN EN 1484 (1997). Water analysis—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC); German version. Berlin:Beuth.Google Scholar
  10. DIN EN ISO 6878 (2004). Water quality—determination of phosphorus—ammonium molybdate spectrometric method. Berlin:Beuth.Google Scholar
  11. EEA (2012). CORINE land cover. European Environment Agency. Acquired from Accessed in April 2012.
  12. EU-WFD (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327/1.Google Scholar
  13. Fischer, H., Sachse, A., Steinberg, C. E. W., & Pusch, M. (2002). Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnology and Oceanography, 47, 1702–1711.CrossRefGoogle Scholar
  14. Flemming, H.-C. (1996). Sorption sites in biofilms. Water Science and Technology, 32, 27–33.CrossRefGoogle Scholar
  15. Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.Google Scholar
  16. Friese, K., Mages, M., Wendt-Potthoff, K., & Neu, T. R. (1997). Determination of heavy metals in biofilms from the River Elbe by total-reflection X-ray fluorescence spectrometry. Spectrochimica Acta, 52B, 1019–1025.CrossRefGoogle Scholar
  17. Guasch, H., Navarro, E., Serra, A., & Sabater, S. (2004). Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology, 49, 463–473.CrossRefGoogle Scholar
  18. Hillebrand, H., & Sommer, U. (1999). The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnology and Oceanography, 44, 440–446.CrossRefGoogle Scholar
  19. Kamjunke, N., Büttner, O., Jäger, C. G., Marcus, H., von Tümpling, W., Halbedel, S., Norf, H., Brauns, M., Baborowski, M., Wild, R., Borchardt, D., & Weitere, M. (2013). Biogeochemical patterns in a river network along a land use gradient. Environmental Monitoring and Assessment, 185, 9221–9236.CrossRefGoogle Scholar
  20. Knauer, K., Behra, R., & Sigg, L. (1997). Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environmental Toxicology and Chemistry, 16, 220–229.CrossRefGoogle Scholar
  21. Kröpfl, K., Vladar, P., Szabo, K., Ács, É., Borsodi, A. K., Szikora, S., Caroli, S., & Zaray, G. Y. (2006). Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144, 626–631.CrossRefGoogle Scholar
  22. Lawrence, J. R., Scharf, B., Packroff, G., & Neu, T. R. (2002). Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microbial Ecology, 43, 199–207.CrossRefGoogle Scholar
  23. Le Faucheur, S., Sigg, L., & Behra, R. (2005). Phytochelatine als Metallindikatoren? Eawag News: Biofilme, 60d, 22–23.Google Scholar
  24. Lehto, L. L. P., & Hill, B. H. (2013). The effect of catchment urbanization on nutrient uptake and biofilm enzyme activity in Lake Superior (USA) tributary streams. Hydrobiologia, 713, 35–51.CrossRefGoogle Scholar
  25. Mages, M. (2013). Elementbestimmungen in aquatischen Biofilmen und Zooplankton mittels Total Reflektierender Röntgenfluoreszenz Analytik (TXRF). PhD thesis, Leuphana Universität Lüneburg.Google Scholar
  26. Mages, M., Ovari, M., von Tümpling, W. J., & Kröpfl, K. (2004). Biofilms as bioindicators for polluted waters? Total reflection X-ray analysis of biofilms of the Tisza river (Hungary). Analytical and Bioanalytical Chemistry, 378, 1095–1101.CrossRefGoogle Scholar
  27. Mages, M., von Tümpling, W. Jr., van der Veen, A., Baborowski, M. (2006). Elemental determination in natural biofilms of mine drainage water by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B 61, 1146-1152.CrossRefGoogle Scholar
  28. Meylan, S., Behra, R., & Sigg, L. (2003). Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environmental Science and Technology, 37, 5204–5212.CrossRefGoogle Scholar
  29. Meylan, S., Behra, R., & Sigg, L. (2004). Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. Environmental Science and Technology, 38, 3104–3111.CrossRefGoogle Scholar
  30. Morin, S., Duong, T. T., Dabrin, A., Coyne, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schäfer, J., Winterton, P., Blanc, G., & Coste, M. (2008). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution, 151, 532–542.CrossRefGoogle Scholar
  31. Morton, S. D., & Lee, T. H. (1974). Algal blooms—possible effects of iron. Environmental Science and Technology, 8, 673–674.CrossRefGoogle Scholar
  32. Óvari, M., Mages, M., Woelfl, S., von Tümpling, Jun W., Kröpfl, K. (2004). Investigation of the bioavailability of metals bound on sediments for periphyton communities (biofilms) in freshwater. In: Cser, M. A., Sziklai, I. S., Etienne, J.-C., Maymard, Y., Centeno, J., Khassanova, L., Collery, P. (eds.), Metal ions in biology and medicine. John Libbey and Companay Ldt, London, Vol. 8, p. 311–314.Google Scholar
  33. Romani, A. M., Guasch, H., Munoz, I., Ruana, J., Vilalta, E., Schwartz, T., Emtiazi, F., & Sabater, S. (2004). Biofilm structure and function and possible implications for riverine DOC dynamics. Microbial Ecology, 47, 316–328.CrossRefGoogle Scholar
  34. Sabater, S., Guasch, H., Romani, A., & Munoz, I. (2002). The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia, 469, 149–156.CrossRefGoogle Scholar
  35. Scott, J. T., Back, J. A., Taylor, J. M., & King, R. S. (2008). Does nutrient enrichment decouple algal-bacterial production in periphyton? Journal of the North American Benthological Society, 27, 332–344.CrossRefGoogle Scholar
  36. Sheldon, F., & Walker, K. F. (1997). Changes in biofilms induced by flow regulation could explain extinctions of aquatic snails in the Lower River Murray, Australia. Hydrobiologia, 347, 97–108.CrossRefGoogle Scholar
  37. Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: the biology of elements from molecules to the bioshere. Princeton University Press.Google Scholar
  38. Tien, C.-J., & Chen, C. S. (2013). Patterns of metal accumulation by natural river biofilms during their growth and seasonal succession. Archives of Environmental Contamination and Toxicology, 64, 605–616.CrossRefGoogle Scholar
  39. Urabe, J., & Watanabe, Y. (1992). Possibility of N-limitation or P-limitation for planktonic cladocerans—an experimental test. Limnology and Oceanography, 37, 244–251.CrossRefGoogle Scholar
  40. Van Horn, D. J., Sinsabaugh, R. L., Takacs-Vesbach, C. D., Mitchell, K. R., & Dahm, C. N. (2011). Response of heterotrophic stream biofilm communities to a gradient of resources. Aquatic Microbial Ecology, 64, 149–161.CrossRefGoogle Scholar
  41. Volesky, B. (1990). Biosorption of fungal biomass. In B. Volesky (Ed.), Biosorption of heavy metal. Boca Raton: CRC press.Google Scholar
  42. Woelfl, S., Mages, M., & Encina, F. (2003). Cold plasma ashing improves the trace element detection of single Daphia specimens by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B, 58, 2157–2168.CrossRefGoogle Scholar
  43. Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O., Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R., Kunstmann, H., Klotz, S., Munch, J. C., Papen, H., Priesack, E., Schmid, H. P., Steinbrecher, R., Rosenbaum, U., Teutsch, G., & Vereecken, H. (2011). A network of terrestrial environmental observatories in Germany. Vadose Zone Journal, 10, 955–973.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Norbert Kamjunke
    • 1
    • 2
  • Margarete Mages
    • 1
  • Olaf Büttner
    • 3
  • Hanna Marcus
    • 1
  • Markus Weitere
    • 1
  1. 1.Department of River EcologyHelmholtz-Centre for Environmental Research-UFZMagdeburgGermany
  2. 2.Department of Lake ResearchHelmholtz-Centre for Environmental Research-UFZMagdeburgGermany
  3. 3.Department of Aquatic Ecosystem Analysis and ManagementHelmholtz-Centre for Environmental Research-UFZMagdeburgGermany

Personalised recommendations