Skip to main content

Advertisement

Log in

Identifying and managing risk factors for salt-affected soils: a case study in a semi-arid region in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil salinization and desalinization are complex processes caused by natural conditions and human-induced risk factors. Conventional salinity risk identification and management methods have limitations in spatial data analysis and often provide an inadequate description of the problem. The objectives of this study were to identify controllable risk factors, to provide response measures, and to design management strategies for salt-affected soils. We proposed to integrate spatial autoregressive (SAR) model, multi-attribute decision making (MADM), and analytic hierarchy process (AHP) for these purposes. Our proposed method was demonstrated through a case study of managing soil salinization in a semi-arid region in China. The results clearly indicated that the SAR model is superior to the OLS model in terms of risk factor identification. These factors include groundwater salinity, paddy area, corn area, aquaculture (i.e., ponds and lakes) area, distance to drainage ditches and irrigation channels, organic fertilizer input, and cropping index, among which the factors related to human land use activities are dominant risk factors that drive the soil salinization processes. We also showed that ecological irrigation and sustainable land use are acceptable strategies for soil salinity management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta, J. A., Faz, A., Jansen, B., Kalbitz, K., & Martínez-Martínez, S. (2011). Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. Journal of Arid Environments, 75, 1056–1066.

    Article  Google Scholar 

  • Aguiar, A. P. D., Câmara, G., & Escada, M. I. S. (2007). Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: Exploring intra-regional heterogeneity. Ecological Modelling, 209, 169–188.

    Article  Google Scholar 

  • Akramkhanov, A., & Vlek, P. L. G. (2012). The assessment of spatial distribution of soil salinity risk using neural network. Environmental Monitoring and Assessment, 184, 2475–2485.

    Article  CAS  Google Scholar 

  • Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163, 55–62.

    Article  Google Scholar 

  • Ali Kerem, S., & Yaman, B. (2001). A dynamic model of salinization on irrigated lands. Ecological Modelling, 139, 177–199.

    Article  Google Scholar 

  • Anselin, L. (1990). Spatial dependence and spatial structural instability in applied stepwise regression analysis. Journal of Regional Science, 30, 185–207.

    Article  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27, 93–115.

    Article  Google Scholar 

  • Anselin, L., & Griffith, D. A. (1988). Do spatial effects really matter in regression-analysis. Papers of the Regional Science Association, 65, 11–34.

    Article  Google Scholar 

  • Arslan, H., & Demir, Y. (2013). Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environmental Monitoring and Assessment, 185, 1027–1040.

    Article  CAS  Google Scholar 

  • Bennett, S. J., & Virtue, J. G. (2004). Salinity mitigation versus weed risks - can conflicts of interest in introducing new plants be resolved? Australian Journal of Experimental Agriculture, 44, 1141–1156.

    Article  Google Scholar 

  • Benz, L. C., Sandoval, F. M., Doering, E. J., & Willis, W. O. (1976). Managing saline soils in the Red River Valley of the North (ARS-NC-42, agricultural research service). Mandan, North Dakota: USDA.

    Google Scholar 

  • Biggs, A. J. W., Searle, R. D., Watling, K. M., Secombe, K. E., & Larkin, L. M. (2009). Implementation of an adaptive salinity risk framework in the condamine catchment, Queensland Murray-Darling Basin, Australia. International Journal of Geographical Information Science, 23, 441–456.

    Article  Google Scholar 

  • Bilgili, A. V. (2013). Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environmental Monitoring and Assessment, 185, 777–795.

    Article  CAS  Google Scholar 

  • Bradd, J. M., Milne-Horne, W. A., & Gates, G. (1997). Overview of factors leading to dryland salinity and its potential hazard in NSW, Australia. Hydrogeology Journal, 5, 51–67.

    Article  Google Scholar 

  • Caccetta, P., Dunne, R., George, R., & McFarlane, D. (2010). A methodologyology to estimate the future extent of dryland salinity in the southwest of western Australia. Journal of Environmental Quality, 39, 26–34.

    Article  CAS  Google Scholar 

  • Cai, S. M., Zhang, R. Q., Liu, L. M., & Zhou, D. (2010). A methodology of salt-affected soil information extraction based on a support vector machine with texture features. Mathematical and Computer Modelling, 51, 1319–1325.

    Article  Google Scholar 

  • Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-attribute inventory classification using fuzzy AHP methodologyology. Expert Systems with Applications, 35, 1367–1378.

    Article  Google Scholar 

  • Chou, S. Y., Chang, Y. H., & Shen, C. H. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189, 132–145.

    Article  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2003). Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines. Agronomy Journal, 95, 455–471.

    Article  Google Scholar 

  • Darwish, T., Atallah, T., El Moujabber, M., & Khatib, N. (2005). Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agricultural Water Management, 78, 152–164.

    Article  Google Scholar 

  • Dehaan, R. L., & Taylor, G. R. (2002). Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sensing of Environment, 80, 406–417.

    Article  Google Scholar 

  • Di Bella, C. E., Jacobo, E., Golluscio, R. A., & Rodriguez, A. M. (2014). Effect of cattle grazing on soil salinity and vegetation composition along an elevation gradient in a temperate coastal salt marsh of Samborombon Bay (Argentina). Wetlands Ecology and Management, 22, 1–13.

    Article  Google Scholar 

  • Ding, J. L., Wu, M. C., & Tiyip, T. (2011). Study on soil salinization information in arid region using remote sensing technique. Agricultural Sciences in China, 10, 404–411.

    Article  Google Scholar 

  • Dumanskia, J., & Pierib, C. (2000). Land quality indicators: research plan. Agriculture, Ecosystems & Environment, 81(2), 93–102.

    Article  Google Scholar 

  • Eilers, R. G., Eilers, W. D., Pettapiece, W. W., & Lelyk, G. (1995). Salinization of soils. In: Acton, D. F., Gregorich, L. J. (Eds.), The Health of Our Soils-Toward Sustainable Agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa. (pp. 77-86). Publication 1906/E.

  • Florinsky, I. V., Eilers, R. G., & Lelyk, G. W. (2000). Prediction of soil salinity risk by digital terrain modelling in the Canadian prairies. Canadian Journal of Soil Science, 80, 455–463.

    Article  Google Scholar 

  • Geoda. (2005). Exploring Spatial Data with GeoDaTM: A Workbook. http://www.csiss.org/clearinghouse/GeoDa/geodaworkbook.pdf. Accessed April 9 2015.

  • George, R. J., McFarlane, D. J., & Nulsen, R. A. (1997). Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeology, 5, 6–21.

    Article  Google Scholar 

  • Grundy, M. J., Silburn, D. M., & Chamberlain, T. (2007). A risk framework for preventing salinity. Environmental Hazards, 7, 97–105.

    Article  Google Scholar 

  • Guo, H. C. (2009). Comprehensive survey of key drainage in Yinhuang Irrigation Area, Ningxia. China Water Resources, 3, 41–42 (in Chinese).

    Google Scholar 

  • Hamed, Y. (2008). Soil structure and salinity effects of fish farming as compared to traditional farming in northeastern Egypt. Land Use Policy, 25, 301–308.

    Article  Google Scholar 

  • Hatami-Marbini, A., Tavana, M., Hajipour, V., Kangi, F., & Kazemi, A. (2013). An extended compromise ratio methodology for fuzzy group multi-attribute decision making with SWOT analysis. Applied Soft Computing, 13, 3459–3472.

    Article  Google Scholar 

  • Holland, K. L., Jolly, I. D., Overton, I. C., & Walker, G. R. (2009). Analytical model of salinity risk from groundwater discharge in semi-arid, lowland floodplains. Hydrological Processes, 23, 3428–3439.

    Article  CAS  Google Scholar 

  • Huo, X. N., Zhang, W. W., Sun, D. F., Li, H., Zhou, L. D., & Li, B. G. (2011). Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. International Journal of Environmental Research and Public Health, 8, 2074–2089.

    Article  Google Scholar 

  • Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Systems with Applications, 39, 960–966.

    Article  Google Scholar 

  • Jia, X. M., Zhu, L. S., Wu, X. H., Fan, P. F., & Wang, J. (2002). Rational development and utilization of water and soil resources in the Yinchuan Plain. Acta Geoscientica Sinica, 23, 18–20 (in Chinese).

    Google Scholar 

  • Jia, Z., Luo, W., Fang, S., Wang, N., & Wang, L. (2006). Evaluating current drainage practices and feasibility of controlled drainage in the YinNan Irrigation District, China. Agricultural Water Management, 84, 20–26.

    Article  Google Scholar 

  • Kanaroglou, P. S., Adams, M. D., De Luca, P. F., Corr, D., & Sohel, N. (2013). Estimation of sulfur dioxide air pollution concentrations with a spatial autoregressive model. Atmospheric Environment, 79, 421–427.

    Article  CAS  Google Scholar 

  • Kissling, W. D., & Carl, G. (2008). Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59–71.

    Article  Google Scholar 

  • Lamble, P., & Fraser, D. (2004). International commission on irrigation and drainage, 2nd Asian regional conference. Echuca/Moama, NSW: Australia. Creation of a predictive model for salinity risk in the Murray Valley Irrigation Region (NSW).

    Google Scholar 

  • Leda-Ioanna, T., Heracles, P., & Dias, A. H. (2010). Environmental management framework for wind farm siting: methodologyology and case study. Journal of Environmental Management, 91, 2134–2147.

    Article  Google Scholar 

  • Li, X., Wang, Z., Song, K., Zhang, B., Liu, D., & Guo, Z. (2007). Assessment for salinized wasteland expansion and land use change using GIS and remote sensing in the West Part of Northeast China. Environmental Monitoring and Assessment, 131, 421–437.

    Article  Google Scholar 

  • Li, F. X., Wang, X. Q., Guo, Y. Z., Xu, X., Yang, J. G., Ke, Y., & Xiao, H. Y. (2012). Effect of soil properties and soil enzyme activity in different improvement measures of saline-alkali soil in Yinchuan Plain. Research of Soil and Water Conservation, 6, 13–18 (in Chinese).

    Google Scholar 

  • Lobell, D. B., Lesch, S. M., Corwin, D. L., Ulmer, M. G., Anderson, K. A., Potts, D. J., Doolittle, J. A., Matos, M. R., & Baltes, M. J. (2010). Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 39, 35–41.

    Article  CAS  Google Scholar 

  • Lu, D. M. (2004). Ningxia water conservancy new chorography. Yinchuan: Ningxia People’s Press.

    Google Scholar 

  • Ludovic-Alexandre, V., Franck, M., & Jean-Claude, B. (2011). Using a Delphi process and the analytic hierarchy process (AHP) to evaluate the complexity of projects. Expert Systems with Applications, 38, 5388–5405.

    Article  Google Scholar 

  • Mao, Z., Dong, B., & Pereira, L. S. (2004). Assessment and water saving issues for Ningxia paddies, upper Yellow River Basin. Paddy Water Environment, 2, 99–110.

    Article  Google Scholar 

  • Mattiussi, A., Rosano, M., & Simeoni, P. (2014). A decision support system for sustainable energy supply combining multi-objective and multi-attribute analysis: an Australian case study. Decision Support Systems, 57, 150–159.

    Article  Google Scholar 

  • Merckx, B., Steyaert, M., Vanreusel, A., Vincx, M., & Vanaverbeke, J. (2011). Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecological Modelling, 222, 588–597.

    Article  CAS  Google Scholar 

  • Naimi, B., Skidmore, A. K., Groen, T. A., & Hamm, N. A. S. (2011). Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling. Journal of Biogeography, 38, 1497–1509.

    Article  Google Scholar 

  • NSB (Ningxia Statistical Bureau). (2000-2010). Ningxia statistical yearbook. Beijing: China Statistics Press.

  • Overmars, K. P., de Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164, 257–270.

    Article  Google Scholar 

  • Pannell, D. J., & Ewing, M. A. (2006). Managing secondary dryland salinity: options and challenges. Agricultural Water Management, 80, 41–56.

    Article  Google Scholar 

  • Patel, R. M., Prasher, S. O., Goel, P. K., & Bassi, R. (2002). Soil salinity prediction using artificial neural networks. Journal of the American Water Resources Association, 38(1), 91–100.

    Article  Google Scholar 

  • Pereira, L. S., Gonçalves, J. M., Dong, B., Mao, Z., & Fang, S. X. (2007). Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agricultural Water Management, 93, 109–122.

    Article  Google Scholar 

  • Phong, N. D., My, T. V., Nang, N. D., Tuong, T. P., Phuoc, T. N., & Trung, N. H. (2003). Salinity dynamics and its implication on cropping patterns and rice performance in shrimp-rice system. Rice-shrimp Farming in the Mekong Delta. Biological and Socioeconomic Issues, 52, 70–88.

    Google Scholar 

  • Poulton, P. L., Huth, N. I., & Carberry, P. S. (2005). Use of simulation in assessing cropping system strategies for minimising salinity risk in brigalow landscapes. Australian Journal of Experimental Agriculture, 45, 635–642.

    Article  Google Scholar 

  • Qureshi, M. E., & Harrison, S. R. (2001). A decision support process to compare riparian revegetation options in Scheu Creek catchment in North Queensland. Journal of Environmental Management, 62, 101–112.

    Article  CAS  Google Scholar 

  • Rao, R., & Yadava, V. (2009). Multi-attribute optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Optics & Laser Technology, 41, 922–930.

    Article  CAS  Google Scholar 

  • Rina, K., Singh, C. K., Datta, P. S., Singh, N., & Mukherjee, S. (2013). Geochemical modelling, ionic ratio and GIS based mapping of groundwater salinity and assessment of governing processes in Northern Gujarat, India. Environmental Earth Sciences, 70, 2421–2422.

    Article  Google Scholar 

  • Saaty, T. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Sato, H. (2001). The current state of paddy agriculture in Japan. Irrigation and Drainage, 2, 91–99.

    Article  Google Scholar 

  • Slavik, V., Grac, R., & Klobucnik, M. (2011). Spatial autocorrelation— methodology for defining and classifying regions in the context of socio-economic regionalization in the Slovak Republic. Sociologia, 43, 183–204.

    Google Scholar 

  • Smith, A. J. (2008). Rainfall and irrigation controls on groundwater rise and salinity risk in the Ord River Irrigation Area, northern Australia. Hydrogeology Journal, 16, 1159–1175.

    Article  Google Scholar 

  • Sugimori, Y., Funakawa, S., Pachikin, K. M., Ishida, N., & Kosaki, T. (2008). Soil salinity dynamics in irrigated fields and its effects on paddy based rotation systems in southern Kazakhstan. Land Degradation & Development, 19, 305–320.

    Article  Google Scholar 

  • Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry, 38, 1413–1421.

    Article  CAS  Google Scholar 

  • Triantafilis, J., Odeh, I. O. A., Warr, B., & Ahmed, M. F. (2004). Mapping of salinity risk in the lower Namoi valley using non-linear kriging methods. Agricultural Water Management, 69, 203–229.

    Article  Google Scholar 

  • Vahdani, B., Mousavi, S. M., & Tavakkoli-Moghaddam, R. (2011). Group decision making based on novel fuzzy modified TOPSIS method. Applied Mathematical Modelling, 35, 4257–4269.

    Article  Google Scholar 

  • Vahdani, B., Mousavi, S. M., Tavakkoli-Moghaddam, R., & Hashemi, H. (2013). A new design of the elimination and choice translating reality method for multi-criteria group decision-making in an intuitionistic fuzzy environment. Applied Mathematical Modelling, 37, 1781–1799.

    Article  Google Scholar 

  • Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: an overview of applications. European Journal of Operational Research, 169, 1–29.

    Article  Google Scholar 

  • Wang, H., Wang, J. H., & Liu, G. H. (2007). Spatial regression analysis on the variation of soil salinity in the Yellow River Delta – art. no. 67531U. In: 15th International Conference on Geoinformatics, Nanjing, PR China.

  • Wang, Y., Xiao, D., Li, Y., & Li, X. (2008). Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang Province, China. Environmental Monitoring and Assessment, 140, 291–302.

    Article  Google Scholar 

  • Wang, X. D., Zhong, X. H., & Gao, P. (2010). A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. Journal of Environmental Management, 91, 1981–1990.

    Article  Google Scholar 

  • Wiebe, B. H., Eilers, R. G., Eilers, W. D., & Brierley, J. A. (2007). Application of a risk indicator for assessing trends in dryland salinization risk on the Canadian Prairies. Canadian Journal of Soil Science, 87, 213–224.

    Article  Google Scholar 

  • Wulder, M. A., White, J. C., Coops, N. C., Nelson, Y., & Boots, B. (2007). Using local spatial autocorrelation to compare outputs from a forest growth model. Ecological Modelling, 209, 264–276.

    Article  Google Scholar 

  • Xie, X. M., Zhao, W. J., Pei, Y. S., Qing, D. Y., Yu, F. L., & Wang, L. (2002). Optimal allocation of water resources and sustainable use of strategic research in Ningxia (pp. 116–118). Beijng: Yellow River Conservancy Press (in Chinese).

    Google Scholar 

  • Xiong, S., Xiong, Z., & Wang, P. (1996). Review: soil salinity in the irrigated area of the Yellow River in Ningxia, China. Arid Soil Research and Rehabilitation, 10, 95–101.

    Article  Google Scholar 

  • Yao, Y. L. (1995). A study on the development and utilization direction of the low-lying saline-alkali wasteland in the Yellow Rive irrigation region in Ningxia. Journal Natural Resources, 4, 364–371 (in Chinese).

    Google Scholar 

  • Young, G. I. M. (1970). Feasibility studies. Appraisal Journal, 3, 376–383.

    Google Scholar 

  • Yuen, K. K. F. (2010). Analytic hierarchy prioritization process in the AHP application development: A prioritization operator selection approach. Applied Soft Computing, 10, 975–989.

    Article  Google Scholar 

  • Zare Mehrjerdi, Y. (2014). Strategic system selection with linguistic preferences and grey information using MCDM. Applied Soft Computing, 18, 323–337.

    Article  Google Scholar 

  • Zhang, G., & Lu, J. (2009). A linguistic intelligent user guide for methodology selection in multi-objective decision support systems. Information Sciences, 179, 2299–2308.

    Article  Google Scholar 

  • Zhang, Y. P., Hu, K. L., Li, B. G., Zhou, L. N., Luo, Y., & Zhu, J. N. (2010a). Spatial distribution pattern of soil salinity and saline soil in Yinchuan Plain of China. Transactions of the Chinese Society of Agricultural Engineering, 25, 19–24 (in Chinese).

    Google Scholar 

  • Zhang, Z. X., Zhang, H. Y., & Zhou, D. W. (2010b). Using GIS spatial analysis and logistic regression to predict the probabilities of human-caused grassland fires. Journal of Arid Environments, 74, 386–393.

    Article  Google Scholar 

  • Zhou, D., Lin, Z. L., & Liu, L. M. (2012). Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Science of the Total Environment, 439, 260–274.

    Article  CAS  Google Scholar 

  • Zhou, D., Lin, Z. L., Liu, L. M., & Zimmermann, D. (2013). Assessing secondary soil salinization risk based on the PSR sustainability framework. Journal of Environmental Management, 128, 642–654.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the National Natural Science Fund, China (No. 41301619 and 41130526). We express our sincere thanks to Mr. Yuanpei Zhang, Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry of China for the soil and groundwater salinity data and strong support during the study period. The authors want to thank the anonymous reviewers for their invaluable comments that led to a much improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Xu, J., Wang, L. et al. Identifying and managing risk factors for salt-affected soils: a case study in a semi-arid region in China. Environ Monit Assess 187, 421 (2015). https://doi.org/10.1007/s10661-015-4639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4639-7

Keywords

Navigation