Identification and analysis of polyaromatic hydrocarbons (PAHs)—biodegrading bacterial strains from refinery soil of India

  • Priyanka Chaudhary
  • Harmesh Sahay
  • Richa Sharma
  • Alok Kumar Pandey
  • Shashi Bala Singh
  • A. K. Saxena
  • Lata Nain


Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40–70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs.


Biodegradation Bioremediation PAHs Microbes Oil refinery 



The financial assistance provided by the Indian council of Agricultural Research, New Delhi through AMAAS network project is gratefully acknowledged. The authors are also grateful to the division of Microbiology and Agricultural chemicals for providing the necessary facilities to undertake this study.

Supplementary material

10661_2015_4617_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)


  1. Annweiler, E., Materna, A., Safinowski, M., Kappler, A., Richnow, H. H., Michaelis, W., & Meckenstock, R. U. (2000). Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Applied Environmental Microbiology, 66, 5329–5333.CrossRefGoogle Scholar
  2. Arulazahan, P., & Vasudevan, N. (2011). Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. Journal of Environmental Science, 23, 282–287.CrossRefGoogle Scholar
  3. Baboshin, M., Akimov, V., Baskunov, B., Born, T. L., Khan, S. U., & Golovleva, L. (2008). Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation, 19, 567–576.CrossRefGoogle Scholar
  4. Boonchan, S., Britz, M. L., & Stanley, G. A. (1998). Surfactant- enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnology Bioengineering, 59, 482–494.CrossRefGoogle Scholar
  5. Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67.CrossRefGoogle Scholar
  6. Bull, A. T., Goodfellow, M., & Slater, J. H. (1992). Biodiversity as a source of innovation in biotechnology. Annual Reviews of Microbiology, 46, 219–252.CrossRefGoogle Scholar
  7. Bushnell, L. D., & Haas, H. F. (1941). The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41, 653–673.Google Scholar
  8. Charles, T. C., & Nester, E. W. (1993). A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. Journal of Bacteriology, 175, 6614–6625.Google Scholar
  9. Chaudhary, P., Sharma, R., Singh, S. B., Chaudhary, P., Sharma, R., Singh, S. B., & Lata. (2011). Bioremediation of PAH by Streptomyces sp. Bulletin of Environmental Contamination and Toxicology, 86, 268–271.CrossRefGoogle Scholar
  10. Chaudhary, P., Singh, S. B., Chaudhry, S., & Lata. (2012). Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area-A case study. Environmental Assessment and Monitoring, 184(2), 1145–1156.CrossRefGoogle Scholar
  11. Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996). Bacterial consortia for crude oil spill remediation. Water Science and Technology, 34, 187–193.CrossRefGoogle Scholar
  12. Cybulski, Z., Dziurla, E., Kaczorek, E., & Olszanowski, A. (2003). The influence of emulsifiers on hydrocarbon biodegradation by Pseudomondacea and Bacillaea strains. Spill Science Technology Bulletin, 8, 503–507.CrossRefGoogle Scholar
  13. De Carvalho, C. C. C. R., Parreno-Marchante, B., Neumann, G., da Fonseca, M. M. R., & Heipieper, H. J. (2005). Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Applied Microbiology Biotechnology, 67, 383–388. doi: 10.1007/s00253-004-1750-z.CrossRefGoogle Scholar
  14. Di Gennaro, P., Rescalli, E., Galli, E., Sello, G., & Bestetti, G. (2001). Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Research Microbiology, 152(7), 641–651. doi: 10.1016/S0923-2508(01)01243-8.CrossRefGoogle Scholar
  15. Edwards, U., Rogall, T., Blocker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acid Research, 19(19), 7843–7853.CrossRefGoogle Scholar
  16. Farhadian, M., Vachelard, C., Duchez, D., & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology, 99, 5296–5308. doi: 10.1016/j.biortech.2007.10.025.CrossRefGoogle Scholar
  17. Gurjeet, P., Kothiyal, N. C., & Kumar, V. (2014). Bioremediation of some polycyclic aromatic hydrocarbons (PAH) from soil using Sphingobium indicum, Sphingobium japonicum and Stenotrophomonas maltophilia bacterial strains under aerobic conditions. Journal of Environmental Research and Development, 8, 396–405.Google Scholar
  18. Hamamura, N., Ward, D. M., & Inskeep, W. P. (2013). Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiology Ecology, 85, 168–178.CrossRefGoogle Scholar
  19. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Material, 169, 1–15.CrossRefGoogle Scholar
  20. Herrenkohl, M. J., Lunz, J. D., Sheets, R. G., & Wakeman, J. S. (2001). Environmental impacts of PAH and oil release as a NAPL or as contaminated pore water from the construction of a 90-cm in situ isolation cap. Environmental Science Technology, 35, 4927–4932.CrossRefGoogle Scholar
  21. Juhasz, A. L., Stanley, G. A., & Britz, M. L. (2000). Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology, 30, 396–401.CrossRefGoogle Scholar
  22. Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182, 2059–2067.CrossRefGoogle Scholar
  23. Kang, H., Hwang, S. Y., Kim, Y. M., Kim, E., Kim, Y. S., & Kim, S. K. (2003). Degradation of phenanthrene and naphthalene by a Burkholderia species strain. Canadian Journal of Microbiology, 49, 39–144.CrossRefGoogle Scholar
  24. Kim, Y. H., Engesser, K. H., & Cerniglia, C. E. (2003). Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Archives of Biochemistry Biophysics, 416, 209–217.CrossRefGoogle Scholar
  25. Krauss, M., Wilcse, W., & Zech, W. (2000). Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environmental Science Technology, 34, 4335–4340.CrossRefGoogle Scholar
  26. Lindstrom, J. E., Barry, R. P., & Braddock, J. F. (1999). Long-term effect on microbial communities after a sub artic oil spill. Soil Biology and Biochemistry, 31, 1677–1689.CrossRefGoogle Scholar
  27. Mukherjee, S., Das, P., & Sen, R. (2009). Rapid quantification of a microbial surfactant by a simple turbidometric method. Journal of Microbiology Methods, 76, 38–42.CrossRefGoogle Scholar
  28. Nam, J. J., Song, B. H., Eom, K. C., Lee, S. H., & Smith, A. (2003). Distribution of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in South Korea. Chemosphere, 50, 1281–1289.CrossRefGoogle Scholar
  29. Pandey, G., & Jain, R. K. (2002). Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Applied Environmental Microbiology, 68, 5789–5795.CrossRefGoogle Scholar
  30. Pumphrey, G. M., & Madsen, E. L. (2007). Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2. Microbiology, 153, 3730–3738. doi: 10.1099/mic.0.2007/010728-0.CrossRefGoogle Scholar
  31. Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., & Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5, 182–189.CrossRefGoogle Scholar
  32. Schluep, M., Imboden, D. M., Galli, R., & Zeyer, J. (2001). Mechanisms affecting the dissolution of non aqueous phase liquids into the aqueous phase in slow stirring batch system. Environmental Toxicology Chemistry, 20, 459–466.CrossRefGoogle Scholar
  33. Sharma, M., & Rawat, M. K. (2013). Study on polycyclic aromatic hydrocarbons and poly chlorinated biphenyls yearly based concentration in waste oil-sludge at Mathura-Agra Region. Journal of Current Chemical & Pharmaceutical Sciences, 3(1), 16–22.Google Scholar
  34. Shiaris, M. P. (1989). Seasonal biotransformation of naphthalene, phenanthrene and benzo (a) pyrene in superficial estuarine sediments. Applied Environmental Microbiology, 55, 1391–1399.Google Scholar
  35. Watanabe, K. (2001). Microorganisms relevant to bioremediation. Current Opinions in Biotechnology, 12, 237–241.CrossRefGoogle Scholar
  36. Wick, L. Y., Colangelo, T., & Harms, H. (2001). Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environmental Science Technology, 35, 354–361.CrossRefGoogle Scholar
  37. Wong, J. W. C., Fang, M., Zhao, Z., & Xing, B. (2004). Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. Journal of Environmental Quality, 33, 2015–2025.CrossRefGoogle Scholar
  38. Zhang, W., Wang, H., Zhang, R., Yu, X. Z., Qian, P. Y., & Wong, M. H. (2010). Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology, 19, 96–104.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Priyanka Chaudhary
    • 1
  • Harmesh Sahay
    • 2
  • Richa Sharma
    • 1
  • Alok Kumar Pandey
    • 3
  • Shashi Bala Singh
    • 4
  • A. K. Saxena
    • 1
  • Lata Nain
    • 1
  1. 1.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.National Dairy Research InstituteKarnalIndia
  3. 3.International Centre for Genetic Engineering & BiotechnologyNew DelhiIndia
  4. 4.Division of Agricultural ChemicalsIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations