Fiber optic light sensor

  • Wayne Chudyk
  • Kyle F. Flynn


We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow.


Fiber optic sensor Photosynthetically active radiation PAR Light Meter Optics 



The authors wish to thank the Montana-Wyoming USGS Science Center for loan of their Li-COR 192 m used in support of this work. The authors also wish to thank Kevin Chudyk for layout, assembly, and testing of the photodiode detector breakout board circuitry. Portions of this work were presented at SPIE Photonics Europe Innovation Village April 13–18, 2014.


  1. Aaslyng, J. M., Rosenqvist, E., & Høgh-Schmidt, K. (1999). A sensor for microclimatic measurement of photosynthetically active radiation in a plant canopy. Agricultural and Forest Meteorology, 96, 189–197. doi: 10.1016/S0168-1923(99)00057-X.CrossRefGoogle Scholar
  2. Bechtold, H. A., Rosi-Marshall, E. J., Warren, D. R., & Cole, J. J. (2012). A practical method for measuring integrated solar radiation reaching streambeds using photodegrading dyes. Freshwater Sciences, 31, 1070–1077. doi: 10.1899/12-003.1.CrossRefGoogle Scholar
  3. Benham, D. G., & George, D. G. (1981). A portable system for measuring water temperature, conductivity, dissolved oxygen, light attenuation and depth of sampling. Freshwater Biology, 11, 459–471. doi: 10.1111/j.1365-2427.1981.tb01277.x.CrossRefGoogle Scholar
  4. Binzer, T., & Sand-Jensen, K. (2002). Production in aquatic macrophyte communities: a theoretical and empirical study of the influence of spatial light distribution. Limnology and Oceanography, 47, 1742–1750. ISSN: 0024-3590.CrossRefGoogle Scholar
  5. Booth, C. R. (1976). The design and evaluation of a measurement system for photosynthetically active quantum scalar irradiance. Limnology and Oceanography, 21, 326–336. ISSN: 0024–3590.CrossRefGoogle Scholar
  6. Brush, M. J., & Nixon, S. W. (2002). Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Marine Ecology Progress Series, 238, 73–79. doi: 10.3354/meps238073.CrossRefGoogle Scholar
  7. Burr, G. O., & Burr, M. M. (1934). A rapid survey instrument for the measurement of light intensity under water. Ecology, 15, 326–328. doi: 10.2307/1932481.CrossRefGoogle Scholar
  8. Carter, V., & Rybicki, N. B. (1990). Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary. Estuaries, 13, 441–452. doi: 10.2307/1351788.CrossRefGoogle Scholar
  9. Civera, J. I., Gil, R. I., Laguarda-Miro, N., Garcia-Breijo, E., Gil-Sánchez, & Martínez-Guijarro, R. (2011). Instrument for sunlight extinction measurement in water bodies. Sensors and Actuators A, 168, 267–274. doi: 10.1016/j.sna.2011.04.025.CrossRefGoogle Scholar
  10. Crisp, J., & Elliot, B. (2005). Introduction to fiber optics (3rd ed.). Boston: Elsevier.Google Scholar
  11. Dawson, F. H. (1980). An inexpensive photosynthetic irradiance sensor for ecological field studies. Hydrobiologia, 77, 71–76. doi: 10.1007/BF00006390.CrossRefGoogle Scholar
  12. Dodds, W. K. (1992). A modified fiber-optic light microprobe to measure spherically integrated photosynthetic photon flux density: characterization of periphyton photosynthesis-irradiance patterns. Limnology and Oceanography, 37, 871–878. doi: 10.4319/lo.1992.37.4.0871.CrossRefGoogle Scholar
  13. Fielder, P. & Comeau, P. (2000). Construction and testing of an inexpensive PAR sensor. Research Branch British Columbia Ministry of Forests Working paper 53, Victoria, B.C. ISBN: 0-7726-4392-X.Google Scholar
  14. Flynn, K. F. (2014). Methods and mathematical approaches for modeling Cladophora glomerata and river periphyton, Ph.D. thesis, Dept. of Civil & Env. Eng., Tufts University, Medford, MA.Google Scholar
  15. Flynn K. F., Chudyk, W. A., Chapra, S. C., & Watson, V. (2014). Influence of biomass and velocity on light attenuation of Cladophora glomerata L. (Kuetzing) in rivers, in preparation.Google Scholar
  16. Fox, R. W., Pritchard, P. J., & McDonald, A. T. (2009). Introduction to fluid mechanics (7th ed.). Hoboken: Wiley. ISBN 9780471742999.Google Scholar
  17. Frankovich, T. A., & Zieman, J. C. (2005). Periphyton light transmission relationships in Florida Bay and the Florida Keys, USA. Aquatic Botany, 83, 14–30. doi: 10.1016/j.aquabot.2005.05.003.CrossRefGoogle Scholar
  18. Hill, W. R., Smith, J. G., & Stewart, A. J. (2010). Light, nutrients, and herbivore growth in oligotrophic streams. Ecology, 91, 518–527. doi: 10.1890/09-0703.1.CrossRefGoogle Scholar
  19. Højerslev, N. (1975). A spectral light absorption meter for measurements in the sea. Limnology and Oceanography, 20, 1024–1034. ISSN: 0024-3590.CrossRefGoogle Scholar
  20. Jerlov, N. G. (1968). Optical oceanography. New York: Elsevier Publishing Company. ISBN 978-0444403209.Google Scholar
  21. Jones, H. G., Archer, N., Rotenberg, E., & Casa, R. (2003). Radiation measurement for plant ecophysiology. Journal of Experimental Botany, 54, 879–889. doi: 10.1093/jxb/erg116.CrossRefGoogle Scholar
  22. Jørgensen, B. B., & Des Marais, D. J. (1986). A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment. Limnology and Oceanography, 31, 1376–1383. doi: 10.4319/lo.1986.31.6.1376.CrossRefGoogle Scholar
  23. Kirk, J. T. O. (1991). Volume scattering function, average cosines, and the underwater light field. Limnology and Oceanography, 36, 455–467. doi: 10.4319/lo.1991.36.3.0455.CrossRefGoogle Scholar
  24. Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems. New York: Cambridge University Press. ISBN 9780511623370.CrossRefGoogle Scholar
  25. Kirk, J. T. O. (2003). The vertical attenuation of irradiance as a function of the optical properties of the water. Limnology and Oceanography, 48, 9–17. doi: 10.4319/lo.2003.48.1.0009.CrossRefGoogle Scholar
  26. Koch, E. W. (2001). Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24, 1–17. doi: 10.2307/1352808.CrossRefGoogle Scholar
  27. Krause-Jensen, D., & Sand-Jensen, K. (1998). Light attenuation and photosynthesis of aquatic plant communities. Limnology and Oceanography, 43, 396–407. ISSN: 0024–3590.CrossRefGoogle Scholar
  28. Kühl, M. (2005). Optical microsensors for analysis of microbial communities. Methods in Enzymology, 397, 166–199. doi: 10.1016/S0076-6879(05)97010-9.
  29. Kühl, M., Lassen, C., & Revsbech, N. P. (1997). A simple light meter for measurements of PAR (400 to 700 nm) with fiber-optic microprobes: application for P vs E-0(PAR) measurements in a microbial mat. Aquatic Microbial Ecology, 13, 197–207. doi: 10.3354/ame013197.
  30. Law, R. (2011). A review of the function and uses of, and factors affecting, stream phytobenthos. Freshwater Reviews, 4, 135–166. doi: 10.1608/FRJ-4.1.448.CrossRefGoogle Scholar
  31. LI-COR (2011). Radiation measurement instruments, Accessed 2/14/2014.
  32. Long, M. H., Rheuban, J. E., Berg, P., & Zieman, J. C. (2012). A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnology and Oceanography: Methods, 10, 416–424. doi: 10.4319/lom.2012.10.416.CrossRefGoogle Scholar
  33. McPherson, H. G. (1969). Photocell-filter combinations for measuring photosynthetically active radiation. Agricultural Meteorology, 6, 347–356. doi: 10.1016/0002-1571(69)90026-0.CrossRefGoogle Scholar
  34. Melbourne, B. A., & Daniel, P. J. (2003). A low-cost sensor for measuring spatiotemporal variation of light intensity on the streambed. Journal of the North American Benthological Society, 22, 143–151. doi: 10.2307/1467983.CrossRefGoogle Scholar
  35. Muchow, R. C., & Kerven, G. L. (1977). A low cost instrument for measurement of photosynthetically active radiation in field canopies. Agricultural Meteorology, 18, 187–195. doi: 10.1016/0002-1571(77)90036-X.CrossRefGoogle Scholar
  36. Nepf, H., & Ghisalberti, M. (2008). Flow and transport in channels with submerged vegetation. Acta Geophysica, 56, 753–777. doi: 10.2478/s11600-008-0017-y.CrossRefGoogle Scholar
  37. Ohta, T., Miyake, Y., & Hiura, T. (2011). Light intensity regulates growth and reproduction of a snail grazer (Gyraulus chinensis) through changes in the quality and biomass of stream periphyton. Freshwater Biology, 56, 2260–2271. doi: 10.1111/j.1365-2427.2011.02653.x.CrossRefGoogle Scholar
  38. Parallax, Inc. (2014). PLX-DAQ, Accessed 21 Feb 2014.
  39. Pérez, G. L., Lagomarsino, L., & Zagarese, H. E. (2013). Optical properties of highly turbid shallow lakes with contrasting turbidity origins: the ecological and water management implications. Journal of Environmental Management, 130, 207–220. doi: 10.1016/j.jenvman.2013.09.001.CrossRefGoogle Scholar
  40. Pontailler, J. (1990). A cheap quantum sensor using a gallium arsenide photodiode. Functional Ecology, 4, 591–596. doi: 10.2307/2389327.CrossRefGoogle Scholar
  41. Preisendorfer, R. W., & Mobley, C. D. (1984). Direct and inverse irradiance models in hydrologic optics. Limnology and Oceanography, 29, 903–929. doi: 10.4319/lo.1984.29.5.0903.CrossRefGoogle Scholar
  42. Ross, J., & Sulev, M. (2000). Sources of errors in measurements of PAR. Agricultural and Forest Meteorology, 100, 103–125. doi: 10.1016/S0168-1923(99)00144-6.CrossRefGoogle Scholar
  43. Sturt, M. M., Jansen, M. A. K., & Harrison, S. S. C. (2011). Invertebrate grazing and riparian shade as controllers of nuisance algae in a eutrophic river. Freshwater Biology, 56, 2580–2593. doi: 10.1111/j.1365-2427.2011.02684.x.CrossRefGoogle Scholar
  44. Taos (2007). TSL230RD, TSL230ARD, TSL230BRD Programmable light-to-frequency converters, Accessed 9/7/2012.
  45. Thomson, J. (2010). Getting started with the TSL230R and Arduino, Accessed 21 Feb 2014.
  46. Wilson, C. A. M. E., Stoesser, T., Bates, P. D., & Pinzen, A. B. (2003). Open channel flow through different forms of submerged flexible vegetation. Journal of Hydraulic Engineering, 129, 847–853. doi: 10.1061/∼ASCE!0733-9429∼2003!129:11∼847!.CrossRefGoogle Scholar
  47. Żbikowski, J., & Kobak, J. (2007). Factors influencing taxonomic composition and abundance of macrozoobenthos in extralittoral zone of shallow eutrophic lakes. Hydrobiologia, 584, 145–155. doi: 10.1007/s10750-007-0613-x.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Civil and Environmental Engineering DepartmentTufts UniversityMedfordUSA
  2. 2.Montana Department of Environmental QualityHelenaUSA

Personalised recommendations