Skip to main content
Log in

Fiber optic light sensor

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaslyng, J. M., Rosenqvist, E., & Høgh-Schmidt, K. (1999). A sensor for microclimatic measurement of photosynthetically active radiation in a plant canopy. Agricultural and Forest Meteorology, 96, 189–197. doi:10.1016/S0168-1923(99)00057-X.

    Article  Google Scholar 

  • Bechtold, H. A., Rosi-Marshall, E. J., Warren, D. R., & Cole, J. J. (2012). A practical method for measuring integrated solar radiation reaching streambeds using photodegrading dyes. Freshwater Sciences, 31, 1070–1077. doi:10.1899/12-003.1.

    Article  Google Scholar 

  • Benham, D. G., & George, D. G. (1981). A portable system for measuring water temperature, conductivity, dissolved oxygen, light attenuation and depth of sampling. Freshwater Biology, 11, 459–471. doi:10.1111/j.1365-2427.1981.tb01277.x.

    Article  Google Scholar 

  • Binzer, T., & Sand-Jensen, K. (2002). Production in aquatic macrophyte communities: a theoretical and empirical study of the influence of spatial light distribution. Limnology and Oceanography, 47, 1742–1750. ISSN: 0024-3590.

    Article  Google Scholar 

  • Booth, C. R. (1976). The design and evaluation of a measurement system for photosynthetically active quantum scalar irradiance. Limnology and Oceanography, 21, 326–336. ISSN: 0024–3590.

    Article  Google Scholar 

  • Brush, M. J., & Nixon, S. W. (2002). Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Marine Ecology Progress Series, 238, 73–79. doi:10.3354/meps238073.

    Article  Google Scholar 

  • Burr, G. O., & Burr, M. M. (1934). A rapid survey instrument for the measurement of light intensity under water. Ecology, 15, 326–328. doi:10.2307/1932481.

    Article  Google Scholar 

  • Carter, V., & Rybicki, N. B. (1990). Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary. Estuaries, 13, 441–452. doi:10.2307/1351788.

    Article  Google Scholar 

  • Civera, J. I., Gil, R. I., Laguarda-Miro, N., Garcia-Breijo, E., Gil-Sánchez, & Martínez-Guijarro, R. (2011). Instrument for sunlight extinction measurement in water bodies. Sensors and Actuators A, 168, 267–274. doi:10.1016/j.sna.2011.04.025.

    Article  CAS  Google Scholar 

  • Crisp, J., & Elliot, B. (2005). Introduction to fiber optics (3rd ed.). Boston: Elsevier.

    Google Scholar 

  • Dawson, F. H. (1980). An inexpensive photosynthetic irradiance sensor for ecological field studies. Hydrobiologia, 77, 71–76. doi:10.1007/BF00006390.

    Article  Google Scholar 

  • Dodds, W. K. (1992). A modified fiber-optic light microprobe to measure spherically integrated photosynthetic photon flux density: characterization of periphyton photosynthesis-irradiance patterns. Limnology and Oceanography, 37, 871–878. doi:10.4319/lo.1992.37.4.0871.

    Article  CAS  Google Scholar 

  • Fielder, P. & Comeau, P. (2000). Construction and testing of an inexpensive PAR sensor. Research Branch British Columbia Ministry of Forests Working paper 53, Victoria, B.C. ISBN: 0-7726-4392-X.

  • Flynn, K. F. (2014). Methods and mathematical approaches for modeling Cladophora glomerata and river periphyton, Ph.D. thesis, Dept. of Civil & Env. Eng., Tufts University, Medford, MA.

  • Flynn K. F., Chudyk, W. A., Chapra, S. C., & Watson, V. (2014). Influence of biomass and velocity on light attenuation of Cladophora glomerata L. (Kuetzing) in rivers, in preparation.

  • Fox, R. W., Pritchard, P. J., & McDonald, A. T. (2009). Introduction to fluid mechanics (7th ed.). Hoboken: Wiley. ISBN 9780471742999.

  • Frankovich, T. A., & Zieman, J. C. (2005). Periphyton light transmission relationships in Florida Bay and the Florida Keys, USA. Aquatic Botany, 83, 14–30. doi:10.1016/j.aquabot.2005.05.003.

    Article  Google Scholar 

  • Hill, W. R., Smith, J. G., & Stewart, A. J. (2010). Light, nutrients, and herbivore growth in oligotrophic streams. Ecology, 91, 518–527. doi:10.1890/09-0703.1.

    Article  Google Scholar 

  • Højerslev, N. (1975). A spectral light absorption meter for measurements in the sea. Limnology and Oceanography, 20, 1024–1034. ISSN: 0024-3590.

    Article  Google Scholar 

  • Jerlov, N. G. (1968). Optical oceanography. New York: Elsevier Publishing Company. ISBN 978-0444403209.

    Google Scholar 

  • Jones, H. G., Archer, N., Rotenberg, E., & Casa, R. (2003). Radiation measurement for plant ecophysiology. Journal of Experimental Botany, 54, 879–889. doi:10.1093/jxb/erg116.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B., & Des Marais, D. J. (1986). A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment. Limnology and Oceanography, 31, 1376–1383. doi:10.4319/lo.1986.31.6.1376.

    Article  Google Scholar 

  • Kirk, J. T. O. (1991). Volume scattering function, average cosines, and the underwater light field. Limnology and Oceanography, 36, 455–467. doi:10.4319/lo.1991.36.3.0455.

    Article  Google Scholar 

  • Kirk, J. T. O. (1994). Light and photosynthesis in aquatic ecosystems. New York: Cambridge University Press. ISBN 9780511623370.

    Book  Google Scholar 

  • Kirk, J. T. O. (2003). The vertical attenuation of irradiance as a function of the optical properties of the water. Limnology and Oceanography, 48, 9–17. doi:10.4319/lo.2003.48.1.0009.

    Article  Google Scholar 

  • Koch, E. W. (2001). Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries, 24, 1–17. doi:10.2307/1352808.

    Article  Google Scholar 

  • Krause-Jensen, D., & Sand-Jensen, K. (1998). Light attenuation and photosynthesis of aquatic plant communities. Limnology and Oceanography, 43, 396–407. ISSN: 0024–3590.

    Article  CAS  Google Scholar 

  • Kühl, M. (2005). Optical microsensors for analysis of microbial communities. Methods in Enzymology, 397, 166–199. doi:10.1016/S0076-6879(05)97010-9.

  • Kühl, M., Lassen, C., & Revsbech, N. P. (1997). A simple light meter for measurements of PAR (400 to 700 nm) with fiber-optic microprobes: application for P vs E-0(PAR) measurements in a microbial mat. Aquatic Microbial Ecology, 13, 197–207. doi:10.3354/ame013197.

  • Law, R. (2011). A review of the function and uses of, and factors affecting, stream phytobenthos. Freshwater Reviews, 4, 135–166. doi:10.1608/FRJ-4.1.448.

    Article  Google Scholar 

  • LI-COR (2011). Radiation measurement instruments, www.licor.com. Accessed 2/14/2014.

  • Long, M. H., Rheuban, J. E., Berg, P., & Zieman, J. C. (2012). A comparison and correction of light intensity loggers to photosynthetically active radiation sensors. Limnology and Oceanography: Methods, 10, 416–424. doi:10.4319/lom.2012.10.416.

    Article  Google Scholar 

  • McPherson, H. G. (1969). Photocell-filter combinations for measuring photosynthetically active radiation. Agricultural Meteorology, 6, 347–356. doi:10.1016/0002-1571(69)90026-0.

    Article  Google Scholar 

  • Melbourne, B. A., & Daniel, P. J. (2003). A low-cost sensor for measuring spatiotemporal variation of light intensity on the streambed. Journal of the North American Benthological Society, 22, 143–151. doi:10.2307/1467983.

    Article  Google Scholar 

  • Muchow, R. C., & Kerven, G. L. (1977). A low cost instrument for measurement of photosynthetically active radiation in field canopies. Agricultural Meteorology, 18, 187–195. doi:10.1016/0002-1571(77)90036-X.

    Article  Google Scholar 

  • Nepf, H., & Ghisalberti, M. (2008). Flow and transport in channels with submerged vegetation. Acta Geophysica, 56, 753–777. doi:10.2478/s11600-008-0017-y.

    Article  Google Scholar 

  • Ohta, T., Miyake, Y., & Hiura, T. (2011). Light intensity regulates growth and reproduction of a snail grazer (Gyraulus chinensis) through changes in the quality and biomass of stream periphyton. Freshwater Biology, 56, 2260–2271. doi:10.1111/j.1365-2427.2011.02653.x.

    Article  CAS  Google Scholar 

  • Parallax, Inc. (2014). PLX-DAQ, http://www.parallax.com/downloads/plx-daq. Accessed 21 Feb 2014.

  • Pérez, G. L., Lagomarsino, L., & Zagarese, H. E. (2013). Optical properties of highly turbid shallow lakes with contrasting turbidity origins: the ecological and water management implications. Journal of Environmental Management, 130, 207–220. doi:10.1016/j.jenvman.2013.09.001.

    Article  Google Scholar 

  • Pontailler, J. (1990). A cheap quantum sensor using a gallium arsenide photodiode. Functional Ecology, 4, 591–596. doi:10.2307/2389327.

    Article  Google Scholar 

  • Preisendorfer, R. W., & Mobley, C. D. (1984). Direct and inverse irradiance models in hydrologic optics. Limnology and Oceanography, 29, 903–929. doi:10.4319/lo.1984.29.5.0903.

    Article  Google Scholar 

  • Ross, J., & Sulev, M. (2000). Sources of errors in measurements of PAR. Agricultural and Forest Meteorology, 100, 103–125. doi:10.1016/S0168-1923(99)00144-6.

    Article  Google Scholar 

  • Sturt, M. M., Jansen, M. A. K., & Harrison, S. S. C. (2011). Invertebrate grazing and riparian shade as controllers of nuisance algae in a eutrophic river. Freshwater Biology, 56, 2580–2593. doi:10.1111/j.1365-2427.2011.02684.x.

    Article  Google Scholar 

  • Taos (2007). TSL230RD, TSL230ARD, TSL230BRD Programmable light-to-frequency converters, www.taosinc.com. Accessed 9/7/2012.

  • Thomson, J. (2010). Getting started with the TSL230R and Arduino, http://jethomson.wordpress.com/tsl230r-articles/getting-started-with-the-tsl230r-and-arduino. Accessed 21 Feb 2014.

  • Wilson, C. A. M. E., Stoesser, T., Bates, P. D., & Pinzen, A. B. (2003). Open channel flow through different forms of submerged flexible vegetation. Journal of Hydraulic Engineering, 129, 847–853. doi:10.1061/∼ASCE!0733-9429∼2003!129:11∼847!.

    Article  Google Scholar 

  • Żbikowski, J., & Kobak, J. (2007). Factors influencing taxonomic composition and abundance of macrozoobenthos in extralittoral zone of shallow eutrophic lakes. Hydrobiologia, 584, 145–155. doi:10.1007/s10750-007-0613-x.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Montana-Wyoming USGS Science Center for loan of their Li-COR 192 m used in support of this work. The authors also wish to thank Kevin Chudyk for layout, assembly, and testing of the photodiode detector breakout board circuitry. Portions of this work were presented at SPIE Photonics Europe Innovation Village April 13–18, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Chudyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudyk, W., Flynn, K.F. Fiber optic light sensor. Environ Monit Assess 187, 372 (2015). https://doi.org/10.1007/s10661-015-4597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4597-0

Keywords

Navigation