Discriminant analysis for characterization of hydrochemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India

  • Jobin Thomas
  • Sabu Joseph
  • K. P. Thrivikramji


Discriminant analysis (DA) was performed on river hydrochemistry data for three seasons (i.e., monsoon (MON), post-monsoon (POM), and pre-monsoon (PRM)) to examine the spatio-temporal hydrochemical variability of two mountain river basins (Muthirapuzha River Basin (MRB) and Pambar River Basin (PRB)) of the southern Western Ghats, India. Although the river basins drain tropical mountainous terrain, climate and degree of anthropogenic disturbances show significant differences (i.e., humid, more disturbed MRB vs semiarid, less disturbed PRB). In MRB, TDS, Na+, pH, Mg2+, and K+ are the attributes responsible for significant hydrochemical variations between the seasons, while Cl, TH, and Na+ are the predictors in PRB. The temporal discriminant models imply the importance of rainfall pattern, relative contribution of groundwater toward stream discharge and farming activities in hydrochemistry between the seasons. Inclusion of hydrochemical attributes (in the temporal discriminant functions) that can be derived from both natural and anthropogenic sources suggests that ionic enrichment strongly depends on the seasons, and is mainly due to the variability in the intensity of anthropogenic activities as well as fluctuations in river discharge. In spatial discriminant models, Cl is the only variable responsible for hydrochemical variations between the basins (during MON), whereas Si discriminates during POM and PRM, implying the role of atmospheric supply, anthropogenic modifications as well as intensity of weathering. In the spatial discrimination models, misclassification of hydrochemistry data between MRB and PRB can be attributed to the overlapping effect of humid climate of MRB extending toward the upstream of (semiarid) PRB. This study underscores the versatility of DA in deciphering the significance of climatic controls on hydrochemical composition of tropical mountain rivers.


Discriminant analysis Hydrochemistry Muthirapuzha Pambar Western Ghats 



The first author (JT) is indebted to late Dr. R. Satheesh (SES, Mahatma Gandhi University, Kerala) for his moral support during the early stages of research career. JT is also thankful to Ms. Manjusree, T.M. (Department of Environmental Sciences), the HOD (Department of Geology), Dr. Manoj Chacko (Department of Statistics), University of Kerala and the Director, Central Ground Water Board, Thiruvananthapuram, for the assistance rendered during chemical and statistical analyses. Financial support from Kerala State Council for Science, Technology, and Environment, Thiruvananthapuram, and permission and logistics for the field studies in the protected areas by Kerala Forest Department are also delightedly acknowledged. We are also grateful to the anonymous reviewers for their critical and helpful comments, which significantly improved the quality of the manuscript.


  1. Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., & Keller, K. E. (2004). Temporal dynamics of stream water chemistry in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 295(1-4), 47–63. doi: 10.1016/j.jhydrol.2004.02.016.CrossRefGoogle Scholar
  2. Anshumali, & Ramanathan, A. L. (2007). Seasonal variation in the major ion chemistry of Pandoh Lake, Mandi district, Himachal Pradesh, India. Applied Geochemistry, 22(8), 1736–1747. doi: 10.1016/j.apgeochem.2007.03.045.CrossRefGoogle Scholar
  3. Ashley, R. P., & Lloyd, J. W. (1978). An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. Journal of Hydrology, 39(3-4), 355–364. doi: 10.1016/0022-1694(78)90011-2.CrossRefGoogle Scholar
  4. Back, W. (1961). Techniques for mapping of hydrochemical facies. United States Geological Survey. Professional Paper, 424-D, 380–382.Google Scholar
  5. Berner, E. K., & Berner, R. A. (1996). Global environment: Water, air and geochemical cycles. New Jersey: Prentice-Hall.Google Scholar
  6. Berner, R. A., & Berner, E. K. (1997). Silicate weathering and climate. In W. F. Ruddiman (Ed.), Tectonic uplift and climate change (pp. 353–365). New York: Plenum Press.CrossRefGoogle Scholar
  7. Bluth, G. J. S., & Kump, L. R. (1994). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58(10), 2341–2359. doi: 10.1016/0016-7037(94)90015-9.CrossRefGoogle Scholar
  8. Buell, G. R., & Peters, N. E. (1988). Atmospheric deposition effects on the chemistry of a stream in Northeastern Georgia. Water, Air, and Soil Pollution, 39(3-4), 275–291. doi: 10.1007/BF00279474.Google Scholar
  9. Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568. doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.CrossRefGoogle Scholar
  10. Chandrashekara, U. M., & Sibichan, V. (2006). Logs and snags in a shola forest of Kerala, India. Journal of Mountain Science, 3(2), 131–138. doi: 10.1007/s11629-006-0131-8.CrossRefGoogle Scholar
  11. Chattopadhyay, S., Rani, L. A., & Sangeetha, P. V. (2005). Water quality variations as linked to landuse pattern: a case study in Chalakudy river basin, Kerala. Current Science, 89(12), 2163–2169.Google Scholar
  12. Dalton, M. G., & Upchurch, S. B. (1978). Interpretation of hydrochemical facies by factor analysis. Ground Water, 16(4), 228–233. doi: 10.1111/j.1745-6584.1978.tb03229.x.CrossRefGoogle Scholar
  13. Davis, J. C. (2002). Statistics and data analysis in geology (3rd ed.). New York: Wiley.Google Scholar
  14. De Luis, M., Gonzalez-Hidalgo, J. C., Ravento, S. J., Sanchez, J. R., & Cortina, J. (1997). Distribucion espacial de la concentracion y agresividad de la lluvia en el territorio de la Comunidad Valenciana. Cuadernos de Geologia, 11(3-4), 33–44.Google Scholar
  15. Department of Tourism (2008). Tourist statistics-2008. Department of Tourism, Government of Kerala. Retrieved from
  16. Dixon, W., & Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935–1948. doi: 10.1016/0043-1354(96)00087-5.CrossRefGoogle Scholar
  17. Dupre, B., Dessert, C., Oliva, P., Godderis, Y., Viers, J., Francois, L., Millot, R., & Gaillardet, J. (2003). Rivers, chemical weathering and Earth’s climate. Comptes Rendus Geoscience, 335(16), 1141–1160. doi: 10.1016/j.crte.2003.09.015.CrossRefGoogle Scholar
  18. Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M. A. H. (2005). Standard methods for the examination of water and wastewater, 21st edition. American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF).Google Scholar
  19. Galy, A., & France-Lanord, C. (1999). Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159(1-4), 31–60. doi: 10.1016/S0009-2541(99)00033-9.CrossRefGoogle Scholar
  20. Galy, A., & France-Lanord, C. (2001). Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology, 29(1), 23–26. doi: 10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2.CrossRefGoogle Scholar
  21. Gamble, A., & Babbar-Sebens, M. (2012). On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA. Environmental Monitoring and Assessment, 184(2), 845–875. doi: 10.1007/s10661-011-2005-y.CrossRefGoogle Scholar
  22. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090. doi: 10.1126/science.170.3962.1088.CrossRefGoogle Scholar
  23. GSI. (1992). District resource map, Idukki district, Kerala, part-I, geology and minerals. Kolkata: Geological Survey of India.Google Scholar
  24. Gunnell, Y., Radhakrishna, B. P., Eds. (2001). Sahyadri: the great escarpment of the Indian Subcontinent. Memoir 47(1), Geological Society of India, Bangalore.Google Scholar
  25. Gurumurthy, G. P., Balakrishna, K., Riotte, J., Braun, J.-J., Audry, S., Udaya Shankar, H. N., & Manjunatha, B. R. (2012). Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300–301, 61–69. doi: 10.1016/j.chemgeo.2012.01.016.CrossRefGoogle Scholar
  26. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey, Water Supply Paper 2254.Google Scholar
  27. Hill, T., & Neal, C. (1997). Spatial and temporal variation in pH, alkalinity and conductivity in surface runoff and groundwater for the Upper River Severn catchment. Hydrology and Earth System Sciences, 1(3), 697–715. doi: 10.5194/hess-1-697-1997.CrossRefGoogle Scholar
  28. Jarvie, H. P., Whitton, B. A., & Neal, C. (1998). Nitrogen and phosphorus in east coast British rivers: speciation, sources and biological significance. The Science of the Total Environment, 210/211, 79–109. doi: 10.1016/S0048-9697(98)00109-0.CrossRefGoogle Scholar
  29. Jenkins, A., Sloan, W. T., & Cosby, B. J. (1995). Stream chemistry in the middle hills and high mountains of the Himalayas, Nepal. Journal of Hydrology, 166(1-2), 61–79. doi: 10.1016/0022-1694(94)02600-G.CrossRefGoogle Scholar
  30. Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (3rd ed.). New York: Prentice Hall.Google Scholar
  31. Jose, S., Sreepathy, A., Kumar, B. M., & Venugopal, V. K. (1994). Structural, floristic and edaphic attributes of the grassland-shola forests of Eravikulam in peninsular India. Forest Ecology and Management, 65(2-3), 279–291. doi: 10.1016/0378-1127(94)90176-7.CrossRefGoogle Scholar
  32. Koklu, R., Sengorur, B., & Topal, B. (2010). Water quality assessment using multivariate statistical methods—a case study: Melen River System (Turkey). Water Resources Management, 24(5), 959–978. doi: 10.1007/s11269-009-9481-7.CrossRefGoogle Scholar
  33. Koppen, W. (1936). Das geographische system der klimate. In W. Koppen & R. Geiger (Eds.), Handbuch der klimatologie, Vol. 1, Part C. Berlin: Verlag von Gerbruder Borntraeger.Google Scholar
  34. Kotti, M. E., Vlessidis, A. G., Thanasoulias, N. C., & Evmiridis, N. P. (2005). Assessment of river water quality in Northwestern Greece. Water Resources Management, 19(1), 77–94. doi: 10.1007/s11269-005-0294-z.CrossRefGoogle Scholar
  35. Kowalkowski, T., Zbytniewski, R., Szpejna, J., & Buszewski, B. (2006). Application of chemometrics in river water classification. Water Research, 40(4), 744–752. doi: 10.1016/j.watres.2005.11.042.CrossRefGoogle Scholar
  36. Kumarasamy, P., James, R. A., Dahms, H.-U., Byeon, C.-W., & Ramesh, R. (2014). Multivariate water quality assessment from the Tamiraparani river basin, Southern India. Environmental Earth Sciences , 71(5), 2441–2451. doi: 10.1007/s12665-013-2644-0.CrossRefGoogle Scholar
  37. Li, S., Gu, S., Tan, X., & Zhang, Q. (2009). Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone. Journal of Hazardous Materials, 165(1-3), 317–324. doi: 10.1016/j.jhazmat.2008.09.123.CrossRefGoogle Scholar
  38. Lopez, F. J. S., Garcia, M. D. G., Vidal, J. L. M., Aguilera, P. A., & Frenich, A. G. (2004). Assessment of metal contamination in Donana National Park (Spain) using Crayfish (Procamburus clarkii). Environmental Monitoring and Assessment, 93(1-3), 17–29. doi: 10.1023/B:EMAS.0000016789.13603.e5.CrossRefGoogle Scholar
  39. Magyar, N., Hatvani, I. G., Szekely, I. K., Herzig, A., Dinka, M., & Kovacs, J. (2013). Application of multivariate statistical methods in determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecological Engineering, 55, 82–92. doi: 10.1016/j.ecoleng.2013.02.005.CrossRefGoogle Scholar
  40. Massart, D. L., Vandeginste, B. G. M., Deming, S. N., Michotte, Y., & Kaufman, L. (1988). Chemometrices: A textbook. Amsterdam: Elsevier.Google Scholar
  41. Maya, K., Babu, K. N., Padmalal, D., & Seralathan, P. (2007). Hydrochemistry and dissolved nutrient flux of two small catchment rivers, south-western India. Chemistry and Ecology, 23(1), 13–27. doi: 10.1080/02757540601084029.CrossRefGoogle Scholar
  42. McDowell, W. H., Gines-Sanchez, C., Asbury, C. E., & Perez, C. R. R. (1990). Influence of sea salt aerosols and long range transport on precipitation chemistry at El Verde, Puerto Rico. Atmospheric Environment, Part A: General Topics, 24(11), 2813–2821.CrossRefGoogle Scholar
  43. Mehto, A., & Chakrapani, G. J. (2013). Spatio-temporal variation in the hydrochemistry of Tawa River, Central India: effect of natural and anthropogenic factors. Environmental Monitoring and Assessment, 185(12), 9789–9802. doi: 10.1007/s10661-013-3291-3.CrossRefGoogle Scholar
  44. Murphy, S. F., & Stallard, R. F., eds. (2012). Water quality and landscape processes of four watersheds in eastern Puerto Rico. U.S. Geological Survey Professional Paper 1789, 292 p.Google Scholar
  45. Nair, N. G. K., Santosh, M., & Thampi, P. K. (1983). Geochemistry and petrogenesis of the alkali granite of Munnar, Kerala (India) and its bearing on rift tectonics. Neues Jahrbuch fuer Mineralogie, Abhandlungen, 148(2), 223–232.Google Scholar
  46. Oliver, J. E. (1980). Monthly precipitation distribution: a comparative index. The Professional Geographer, 32(3), 300–309. doi: 10.1111/j.0033-0124.1980.00300.x.CrossRefGoogle Scholar
  47. Padmalal, D., Remya, S. I., Jissy Jyothi, S., Baijulal, B., Babu, K. N., & Baiju, R. S. (2012). Water quality and dissolved inorganic fluxes of N, P, SO4 and K of a small catchment river in the Southwestern Coast of India. Environmental Monitoring and Assessment, 184(3), 1541–1557. doi: 10.1007/s10661-011-2059-x.CrossRefGoogle Scholar
  48. Peters, N. E., & Ratcliffe, E. B. (1998). Tracing hydrologic pathways using chloride at the Panola Mountain research watershed, Georgia, USA. Water, Air, and Soil Pollution, 105(1-2), 263–275. doi: 10.1023/A:1005082332332.CrossRefGoogle Scholar
  49. Petersen, W., Bertino, L., Callies, U., & Zorita, E. (2001). Process identification by principal component analysis of river water-quality data. Ecological Modelling, 138(1-3), 193–213. doi: 10.1016/S0304-3800(00)00402-6.CrossRefGoogle Scholar
  50. Pinol, J., Avila, A., & Roda, F. (1992). The seasonal variation of streamwater chemistry in three forested Mediterranean catchments. Journal of Hydrology, 140(1-4), 119–141. doi: 10.1016/0022-1694(92)90237-P.CrossRefGoogle Scholar
  51. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions of the American Geophysical Union, 25(6), 914–928.CrossRefGoogle Scholar
  52. Prasad, M. B. K., & Ramanathan, A. L. (2005). Solute sources and processes in the Achankovil river basin, Western Ghats, southern India. Hydrological Sciences Journal, 50(2), 341–354. doi: 10.1623/hysj.50.2.341.61798.CrossRefGoogle Scholar
  53. Raj, N., & Azeez, P. A. (2009). Spatial and temporal variation in surface water chemistry of a tropical river, the river Bharathapuzha, India. Current Science, 96(2), 245–251.Google Scholar
  54. Rani, N., Sinha, R. K., Prasad, K., & Kedia, D. K. (2011). Assessment of temporal variation in water quality of some important rivers in middle Gangetic plains, India. Environmental Monitoring and Assessment, 174(1-4), 401–415. doi: 10.1007/s10661-010-1465-9.CrossRefGoogle Scholar
  55. Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga–Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53(5), 997–1009. doi: 10.1016/0016-7037(89)90205-6.CrossRefGoogle Scholar
  56. Sheela, A. M., Letha, J., Joseph, S., Chacko, M., Sanal kumar, S. P., & Thomas, J. (2012). Water quality assessment of a tropical coastal lake system using multivariate cluster, principal component and factor analysis. Lakes & Reservoirs: Research and Management, 17(2), 143–159. doi: 10.1111/j.1440-1770.2012.00506.x.CrossRefGoogle Scholar
  57. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464–475. doi: 10.1016/j.envsoft.2006.02.001.CrossRefGoogle Scholar
  58. Shrestha, S., Kazama, F., & Nakamura, T. (2008). Use of principal component analysis, factor analysis and discriminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River. Journal of Hydroinformatics, 10(1), 43–56. doi: 10.2166/hydro.2008.008.CrossRefGoogle Scholar
  59. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., Sofoniou, M., & Kouimtzis, T. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. doi: 10.1016/S0043-1354(03)00398-1.CrossRefGoogle Scholar
  60. Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): a case study. Water Research, 38(18), 3980–3992. doi: 10.1016/j.watres.2004.06.011.CrossRefGoogle Scholar
  61. Sojka, M., Siepak, M., Ziola, A., Frankowski, M., Murat-Blazejewska, S., & Siepak, J. (2008). Application of multivariate statistical techniques to evaluation of water quality in the Mala Welna River (Western Poland). Environmental Monitoring and Assessment, 147(1-3), 159–170. doi: 10.1007/s10661-007-0107-3.CrossRefGoogle Scholar
  62. Soman, K. (2002). Geology of Kerala. Bangalore: Geological Society of India.Google Scholar
  63. SSO (2007). Benchmark soils of Kerala. Soil Survey Organization, Department of Agriculture, Government of Kerala, Kerala, India.Google Scholar
  64. Stallard, R. F., & Edmond, J. M. (1981). Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research, 86(C10), 9844–9858. doi: 10.1029/JC086iC10p09844.CrossRefGoogle Scholar
  65. Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. the influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88(C14), 9671–9688. doi: 10.1029/JC088iC14p09671.CrossRefGoogle Scholar
  66. Stiff, H. A., Jr. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3(10), 15–17. doi: 10.2118/951376-G.CrossRefGoogle Scholar
  67. Thampi, P. K. (1987). Geology of Munnar granite, Idukki district, Kerala, India, Doctoral dissertation. University of Kerala, Kerala, India.Google Scholar
  68. Thomas, M. F. (1994). Geomorphology in the tropics: A study of weathering and denudation in low latitudes. New York: Wiley.Google Scholar
  69. Thomas, J. (2012). Channel characteristics of two upland river basins of contrasting climate: A study from Kerala, Doctoral dissertation. University of Kerala, Kerala, India.Google Scholar
  70. Thomas, J., Joseph, S., & Thrivikramaji, K. P. (2010). Morphometrical aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2), 135–156. doi: 10.1080/17538940903464370.CrossRefGoogle Scholar
  71. Thomas, J., Joseph, S., Thrivikramji, K. P., & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21(6), 1077–1088 pp. doi: 10.1007/s11442-011-0901-2.
  72. Thomas, J., Joseph, S., Thrivikramji, K. P., Abe, G., & Kannan, N. (2012). Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environmental Earth Sciences , 66(8), 2353–2366. doi: 10.1007/s12665-011-1457-2.CrossRefGoogle Scholar
  73. Thomas, J., Joseph, S., Thrivikramji, K. P., Manjusree, T. M., & Arunkumar, K. S. (2014). Seasonal variation in major ion chemistry of a tropical mountain river, the southern Western Ghats, Kerala, India. Environmental Earth Sciences , 71(5), 2333–2351. doi: 10.1007/s12665-013-2634-2.CrossRefGoogle Scholar
  74. Thomas, J., Joseph, S., & Thrivikramji, K. P. (2015). Hydrogeochemical drivers and processes controlling solute chemistry of two mountain river basins of contrasting climates in the southern Western Ghats, India. In M. Ramkumar, K. Kumaraswamy, & R. Mohanraj (Eds.), Environmental management of river basin ecosystems (pp. 355–396). Heidelberg: Springer-Verlag. doi: 10.1007/978-3-319-13425-3_17.CrossRefGoogle Scholar
  75. Varol, M., Gokot, B., Bekleyen, A., & Sen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 92, 11–21. doi: 10.1016/j.catena.2011.11.013.CrossRefGoogle Scholar
  76. White, A. W., & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9), 1729–1747. doi: 10.1016/0016-7037(95)00078-E.CrossRefGoogle Scholar
  77. WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization, WHO Press.Google Scholar
  78. Wunderlin, D. A., Diaz, M. P., Ame, M. V., Pesce, S. F., Hued, A. C., & Bistoni, M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality, a case study: Suquia river basin (Cordoba, Argentina). Water Research, 35(12), 2881–2894. doi: 10.1016/S0043-1354(00)00592-3.CrossRefGoogle Scholar
  79. Zhang, S. R., Lu, X. X., Higgitt, D. L., Chen, C. T. A., Sun, H. G., & Han, J. T. (2007). Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences. Journal of Geophysical Research, 112(F1), F01011. doi: 10.1029/2006JF000493.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jobin Thomas
    • 1
  • Sabu Joseph
    • 1
  • K. P. Thrivikramji
    • 2
  1. 1.Department of Environmental SciencesUniversity of KeralaThiruvananthapuramIndia
  2. 2.Center for Environment and DevelopmentThiruvananthapuramIndia

Personalised recommendations