Advertisement

Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic

  • Jiřina Száková
  • Jana Tremlová
  • Kristýna Pegová
  • Jana Najmanová
  • Pavel Tlustoš
Article

Abstract

Total selenium (Se) contents were determined in aboveground biomass of wild plant species growing in two uncultivated meadows at two different locations. The soils in these locations had pseudototal (Aqua Regia soluble) Se in concentration ranges of between 0.2 and 0.3 mg kg−1 at the first location, and between 0.7 and 1.4 mg kg−1 at the second location. The plant species represented 29 plant families where the most numerous ones were Poaceae, Rosaceae, Fabaceae , and Asteraceae. The selenium contents in the plants varied between undetectable levels (Aegopodium podagraria, Achillea millefolium, Lotus corniculatus) and 0.158 mg kg−1 (Veronica arvensis, Veronicaceae). The Se levels were roughly one order of magnitude lower compared to other elements with similar soil content, such as cadmium and molybdenum. The transfer factors of Se, quantifying the element transfer from soil to plants, varied between <0.001 and 0.146 with no significant differences between the locations, confirming the limited soil-plant selenium transfer regardless of location, soil Se level, and plant species. Among the plant families, no unambiguous trend to potential elevated Se uptake was observed. Low Se content in the soil and its plant availability was comparable to other Se-deficient areas within Europe.

Keywords

Selenium Plant communities Se plant uptake Transfer factor 

Notes

Acknowledgments

Authors thank for financial support of the Czech Science Foundation (GACR) project No. 13-04580S; correction and improvement of language was provided by Proof-Reading-Service.com Ltd., Devonshire Business Centre, Works Road, Letchworth Garden City SG6 1GJ, UK.

References

  1. Alloway, B. J. (1990). Heavy metals in soils. Glasgow: Blackie and Son Ltd.Google Scholar
  2. Bañuelos, G. S., & Mayland, H. F. (2000). Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation. Ecotoxicology and Environmental Safety, 46, 322–328.CrossRefGoogle Scholar
  3. Bitterli, C., Bañuelos, G. S., & Schulin, R. (2010). Use of transfer factors to characterize uptake of selenium by plants. Journal of Geochemical Exploration, 107, 206–216.CrossRefGoogle Scholar
  4. Coppin, F., Chabroullet, C., Martin-Garin, A., Balesdent, J., & Gaudet, J. P. (2006). Methodological approach to assess the effect of soil ageing on selenium behaviour: first results concerning mobility and solid fractionation of selenium. Biology and Fertility of Soils, 42, 379–386.CrossRefGoogle Scholar
  5. Czech Ministry of the Environment. (1994). Public notice No 13/1994 regulating some details concerning the preservation of agricultural lands available. Prague: Czech Ministry of the Environment.Google Scholar
  6. de Souza, G. A., de Carvalho, J. G., Rutzke, M., Albrecht, J. C., Guimaraes Guilherme, L. R., & Li, L. (2013). Evaluation of germplasm effect on Fe, Zn and Se content in wheat seedlings. Plant Science, 210, 206–213.CrossRefGoogle Scholar
  7. Eich-Greatorex, S., Sogn, T. A., Øgaard, A. F., & Aasen, I. (2007). Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutrient Cycling in Agroecosystems, 79, 221–231.CrossRefGoogle Scholar
  8. European Parliament and Council of Europe (2002) Directive No. 2002/32/ES of European Parliament and Council of Europe concerning xenobiotics in feedstuffs.Google Scholar
  9. Feng, R. W., Wei, C. Y., Tu, S. X., Ding, Y. Z., & Song, Z. G. (2013). A dual role of Se on Cd toxicity: Evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biological Trace Element Research, 151, 113–121.CrossRefGoogle Scholar
  10. Gawalko, E. J., Garrett, R. G., & Nowicki, T. W. (2002). Cadmium, copper, iron, manganese, selenium, and zinc in Canadian spring wheat. Communications in Soil Science and Plant Analysis, 33, 3121–3133.CrossRefGoogle Scholar
  11. Gupta, U. C., & Gupta, S. C. (2000). Selenium in soils and crops, its deficiencies in livestock and humans: implications for management. Communications in Soil Science and Plant Analysis, 31, 1791–1807.CrossRefGoogle Scholar
  12. Gupta, U. C., & Winter, K. A. (1975). Selenium content of soils and crops and effects of lime and sulfur on plant selenium. Canadian Journal of Soil Science, 55, 161–166.CrossRefGoogle Scholar
  13. Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18, 309–318.CrossRefGoogle Scholar
  14. He, P. P., Lv, X. Z., & Wang, G. Y. (2004). Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environment International, 30, 167–172.CrossRefGoogle Scholar
  15. ISO 11260 (1994). Standard of soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution. International Organization for Standardization.Google Scholar
  16. Králová, L., Száková, J., Kubík, Š., Tlustoš, P., & Balík, J. (2010). The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil and Sediment Contamination, 19, 617–634.CrossRefGoogle Scholar
  17. Kursa, J., Herzig, I., Trávníček, J., Illek, J., Kroupová, V., & Fuksová, Š. (2010). Iodine and selenium contents in skeletal muscles of red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boar (Sus scrofa) in the Czech Republic. Acta Veterinaria, 79, 403–407.CrossRefGoogle Scholar
  18. Lee, J., Masters, D. G., White, C. L., Grace, N. D., & Judson, G. J. (1999). Current issues in trace element nutrition of grazing livestock in Australia and New Zealand. Australian Journal of Agricultural Research, 50, 1341–1364.CrossRefGoogle Scholar
  19. Ludvíková, E., Pavlata, L., Vyskočil, M., & Jahn, P. (2005). Selenium status of horses in the Czech Republic. Acta Veterinaria, 74, 369–375.CrossRefGoogle Scholar
  20. Malik, J. A., Goel, S., Kaur, N., Sharma, S., Singh, I., & Nayyar, H. (2012). Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77, 242–248.CrossRefGoogle Scholar
  21. Matraszek, R., & Hawrylak-Nowak, B. (2009). Macronutrients accumulation in useable parts of lettuce as affected by nickel and selenium concentrations in nutrient solution. Fresenius Environmental Bulletin, 18, 1059–1065.Google Scholar
  22. Meloun, M., & Militký, J. (2004). Statistical analysis of the experimental data. Praha: Academia.Google Scholar
  23. Mikkelsen, R. L., Haghnia, G. H., & Page, A. L. (1987). Effects of Ph and selenium oxidation state on the selenium accumulation and yield of alfalfa. Journal of Plant Nutrition, 10, 937–950.CrossRefGoogle Scholar
  24. Munier-Lamy, C., Deneux-Mustin, S., Mustin, C., Merlet, D., Berthelin, J., & Leyval, C. (2007). Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. Journal of Environmental Radioactivity, 97, 148–158.CrossRefGoogle Scholar
  25. Novozamsky, I., Lexmond, T. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals in plants. International Journal of Environmental Analytical Chemistry, 51, 47–58.CrossRefGoogle Scholar
  26. Pavlata, L., Illek, J., Pechová, A., & Matějíček, M. (2002). Selenium status of cattle in the Czech Republic. Acta Veterinaria, 71, 3–8.CrossRefGoogle Scholar
  27. Pegová, K., Száková, J., Najmanová, J., & Tlustoš, P. (2011). Celkové obsahy selenu v půdě a ve volně rostoucí vegetaci na vybrané lokalitě. Proc. Racionální použití hnojiv 30.11.2011, Praha. ČZU v Praze, 118-121.Google Scholar
  28. Pilon-Smits, E. A. H., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267–274.CrossRefGoogle Scholar
  29. Roca-Perez, L., Gil, C., Cervera, M. L., Gonzálvez, A., Ramos-Miras, J., Pons, V., Bech, J., & Boluda, R. (2010). Selenium and heavy metals content in some Mediterranean soils. Journal of Geochemical Exploration, 107, 110–116.CrossRefGoogle Scholar
  30. Sauerbeck, D. (1985). Funktionen, Güte und Belastbarkeit des Bodens aus agrikulturchemischer Sicht. Stuttgart: Materialien zur Umweltforschung, Kohlhammer Verlag.Google Scholar
  31. Seppaenen, M. M., Kontturi, J., Lopez Heras, I., Madrid, Y., Cámara, C., & Hartikainen, H. (2010). Agronomic biofortification of Brassica with selenium-enrichment of SeMet and its identification in Brassica seeds and meal. Plant and Soil, 337, 273–283.CrossRefGoogle Scholar
  32. Sims, J. R., & Haby, V. A. (1971). Simplified colorimetric determination of soil organic matter. Soil Science, 112, 137–141.CrossRefGoogle Scholar
  33. Sun, H. W., Ha, J., Liang, S. X., & Kang, W. J. (2010). Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis, 41, 1195–1204.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jiřina Száková
    • 1
  • Jana Tremlová
    • 1
  • Kristýna Pegová
    • 1
  • Jana Najmanová
    • 1
  • Pavel Tlustoš
    • 1
  1. 1.Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Science PraguePrague-SuchdolCzech Republic

Personalised recommendations