Advertisement

Preconcentration and determination of lead and cadmium levels in blood samples of adolescent workers consuming smokeless tobacco products in Pakistan

  • Sadaf Sadia Arain
  • Tasneem Gul Kazi
  • Hassan Imran Afridi
  • Kapil Dev Brahman
  • Naeemullah
  • Sumaira Khan
  • Abdul Haleem Panhwar
  • Muhammad Afzal Kamboh
  • Jamil R. Memon
Article

Abstract

The present study was aimed to evaluate the cadmium (Cd) and lead (Pb) levels in the blood samples of adolescent boys, chewing different smokeless tobacco (SLT) products in Pakistan. For comparative purpose, boys of the same age group (12–15 years), not consumed any SLT products were selected as referents. To determine trace levels of Cd and Pb in blood samples, a preconcentration method, vortex-assisted liquid–liquid microextraction (VLLME) has been developed, prior to analysis by flame atomic absorption spectrometry. The hydrophobic chelates of Cd and Pb with ammonium pyrrolidinedithiocarbamate were extracted into the fine droplets of ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate, while nonionic surfactant, Triton X-114 was used as a dispersing medium. The main factors affecting the recoveries of Cd and Pb, such as concentration of APDC, centrifugation time, volume of IL and TX-114, were investigated in detail. It was also observed that adolescent boys who consumed different SLT products have 2- to 3-fold higher levels of Cd and Pb in their blood samples as compared to referent boys (p < 0.001).

Keywords

Cadmium Lead Blood Adolescents Vortex-assisted liquid–liquid microextraction 

References

  1. Aguilera-Herrador, E., Lucena, R., Cárdenas, S., & Valcárcel, M. (2008). Direct coupling of ionic liquid based single-drop microextraction and GC/MS. Analytical Chemistry, 80, 793–800.CrossRefGoogle Scholar
  2. Alonso, E. V., Cordero, M. T. S., Torres, A. G. D., & Pavon, J. M. C. (2006). Lead ultra-trace on-line preconcentration and determination using selective solid phase extraction and electrothermal atomic absorption spectrometry: applications in seawaters and biological samples. Analytical Bioanalytical Chemistry, 385, 1178–1185.CrossRefGoogle Scholar
  3. Al-Rmalli, S. W., Jenkins, R. O., & Haris, P. I. (2011). Betel quid chewing elevates human exposure to arsenic, cadmium and lead. Journal of Hazardous Materials, 190, 69–74.CrossRefGoogle Scholar
  4. Arain, M. S., Kazi, T. G., Afiridi, I. H., Arain, S. A., Ali, J., Arain, S. S., Panhwar, A. H., Naeemullah, & Shanker, B. (2014a). Preconcentration and determination of manganese in biological samples by dual cloud point extraction and coupled with flame atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 29, 2349–2355.CrossRefGoogle Scholar
  5. Arain, S. S., Kazi, T. G., Arain, J. B., Afridi, H. I., Brahman, K. D., & Naeemullah. (2014b). Preconcentration of toxic elements in artificial saliva extract of different smokeless tobacco products by dual-cloud point extraction. Microchemical, 112, 42–49.CrossRefGoogle Scholar
  6. Arain, S. S., Kazi, T. G., Arain, J. B., Afridi, H. I., Kazi, A. G., Nasreen, S., & Brahman, K. D. (2014c). Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry. Environmental Science and Pollution Research, 21, 12017–12027.CrossRefGoogle Scholar
  7. Arain, S. S., Kazi, T. G., Arain, A. J., Afridi, H. I., Baig, J. A., Brahman, K. D., & Arain, S. A. (2015). Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 387–394.CrossRefGoogle Scholar
  8. Arian, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Ansari, R., & Abbas, G. (2008). Hazardous impact of toxic metals on tobacco leaves grown in contaminated soil by ultrasonic assisted pseudo digestion; multivariate study. Journal of Hazardous Materials, 155, 216–224.CrossRefGoogle Scholar
  9. Asta, J., Guillard, E., Tissut, M., Gaude, T., & Ravanel, P. (2003). Heavy metal transfer from atmosphere to plants. Journal de Physique IV (Proceedings), 107, 65–68.CrossRefGoogle Scholar
  10. Baars, A.J., Theelen, R.M.C., Janssen, P.J C.M., Hesse, J.M., Van Apeldoorn, M.V., Van Meijerink, M.C.M., Verdam, L., & Zeilmaker, M.J. (2001). Re-evaluation of human-toxicological maximum permissible risk levels. RIVM report 711701025.Google Scholar
  11. Bai, H., Zhou, Q., Xie, G., & Xiao, J. (2010). Temperature-controlled ionic liquid–liquid-phase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry. Talanta, 80, 1638–1642.CrossRefGoogle Scholar
  12. Balaram, P., Sridhar, H., Rajkumar, T., Vaccarella, S., Herrero, R., Nandakumar, A., Ravichandran, K., Ramdas, K., Sankaranarayanan, R., Gajalakshmi, V., Munoz, N., & Franceschi, S. (2002). Oral cancer in Southern India: the influence of smoking, drinking paan-chewing and oral hygiene. International Journal of Cancer, 98, 440–445.CrossRefGoogle Scholar
  13. Bellinger, D. C. (2008). Lead neurotoxicity and socioeconomic status: conceptual and analytical issues. Neurotoxicology, 29(5), 828–832.CrossRefGoogle Scholar
  14. Bendicho, C., Lavilla, I., Pena, F., & Costas, M. (2011). Green sample preparation methods. Challenges in Green Analytical Chemistry, 13, 63.CrossRefGoogle Scholar
  15. Chlopicka, J., Zagrodzki, P., Zachwieja, Z., Krosniak, M., & Folta, M. (1995). Use of pattern recognition methods in the interpretation of heavy metal (lead and cadmium) in children’s scalp hair. Analyst, 120, 943–945.CrossRefGoogle Scholar
  16. Chlopicka, J., Zachwieja, Z., Zagrodzki, P., Frydrych, J., Slota, P., & Krosniak, M. (1998). Lead and cadmium in the hair and blood of children from a highly industrial area in Poland. Biological Trace Element Research, 62, 229–234.CrossRefGoogle Scholar
  17. Cogliano, V., Straif, K., Baan, R., Grosse, Y., Secretan, B., & El Ghissassi, F. (2004). Smokeless tobacco and tobacco-related nitrosamines. The lancet oncology, 5(12), 708.Google Scholar
  18. Cruz-Vera, M., Lucena, R., Cárdenas, S., & Valcárcel, M. (2009). One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction. Journal of Chromatography A, 1216, 6459–6465.CrossRefGoogle Scholar
  19. Dignam, T. A., Evens, A., Eduardo, E., Ramirez, S. M., Caldwell, K. L., Kilpatrick, N., Noonan, G. P., Flanders, W. D., Meyer, P. A., & McGeehin, M. A. (2004). High-intensity targeted screening for elevated blood lead levels among children in 2 inner-city Chicago communities. American Journal of Public Health, 94(11), 1945–1951.CrossRefGoogle Scholar
  20. Fang, Z. (1993). Flow injection separation and preconcentration. Weinheim: VCH.Google Scholar
  21. Fang, Z.-L., Liu, Z.-S., & Shen, Q. (1997). Combination of flow injection with capillary electrophoresis. Part I. The basic system. Analytica Chimica Acta, 346(2), 135–143.CrossRefGoogle Scholar
  22. Farrand, P., Rowe, R. M., Johnston, A., & Murdoch, H. (2001). Community dentistry: prevalence, age of onset and demographic relationships of different areca nut habits amongst children in Tower Hamlets, London. British Dental Journal, 190(3), 150–154.Google Scholar
  23. Gupta, P. C., & Ray, C. S. (2003). Smokeless tobacco and health in India and South Asia. Respirology, 8(4), 419–431.CrossRefGoogle Scholar
  24. Han, X., & Armstrong, D. W. (2007). Ionic liquids in separations. Accounts of Chemical Research, 40(11), 1079–1086.CrossRefGoogle Scholar
  25. Hecht, S. S. (1998). Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chemical Research in Toxicology, 11, 559–603.CrossRefGoogle Scholar
  26. Hecht, S. S. (2003). Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature Reviews Cancer, 3, 733–744.CrossRefGoogle Scholar
  27. Hu, H., Rabinowitz, M., & Smith, D. (1998). Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environmental Health Perspectives, 106, 1.CrossRefGoogle Scholar
  28. Iwata, T., Yano, E., Karita, K., Dakeishi, M., & Murata, K. (2005). Critical dose of lead affecting postural balance in workers. American Journal of Industrial Medicine, 48(5), 319–325.CrossRefGoogle Scholar
  29. Javed, F., Chotai, M., Mehmood, A., & Almas, K. (2010). Oral mucosal disorders associated with habitual gutka usage: a review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 109(6), 857–864.CrossRefGoogle Scholar
  30. Joint, F. A. O., & WHO Expert Committee on Food Additives. (1993). Evaluation of certain food additives and contaminants: forty-first report of the Joint FA.Google Scholar
  31. Joint FAO/WHO Expert Committee on Food Additives Meeting. (2007). Evaluation of certain food additives and contaminants: sixty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives (Vol. 947). World Health Organization (Ed.) World Health Organization.Google Scholar
  32. Kazi, T. G., Wadhwa, S. K., Afridi, H. I., Kazi, N., Kandhro, G. A., Baig, J. A., Shah, A. Q., Kolachi, N. F., & Khan, S. (2010). Evaluation of cadmium and zinc in biological samples of tobacco and alcohol user male mouth cancer, patients. Human & Experimental Toxicology, 29, 221–230.CrossRefGoogle Scholar
  33. Kazi, T. G., Arain, S. S., Afridi, H. I., Naeemullah, Brahman, K. D., Kolachi, N. F., & Mughal, M. A. (2013). Analysis of cadmium, nickel, and lead in commercial moist and dry snuff used in Pakistan. Environmental Monitoring and Assessment, 185, 5199–5208.CrossRefGoogle Scholar
  34. Krejpdo, Z., Olejnik, D., Wójciak, R., & Gawecki, J. (1999). Comparison of trace elements in the hair of children inhabiting areas of different environmental pollution types. Polish Journal of Environmental Studies, 8, 227–229.Google Scholar
  35. Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield, R. L., Dietrich, K. N., Bornschein, R., Greene, T., Rothenberg, S. J., Needleman, H. L., Schnaas, L., Wasserman, G., Graziano, J., & Roberts, R. (2005). Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environmental Health Perspectives, 113, 894–899.CrossRefGoogle Scholar
  36. Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain, 126, 5–19.CrossRefGoogle Scholar
  37. Llobet, J. M., Falco, G., Casas, C., Teixido, A., & Domingo, J. L. (2003). Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, 51, 838–842.CrossRefGoogle Scholar
  38. Meyer, I., Heinrich, J., & Lippold, U. (1999). Factors affecting lead, cadmium, and arsenic levels in house dust in a smelter town in eastern Germany. Environmental Research, 81, 32–44.CrossRefGoogle Scholar
  39. Min, K.-B., Min, J.-Y., Cho, S.-I., Kim, R., Kim, H., & Paek, D. (2008). Relationship between low blood lead levels and growth in children of white-collar civil servants in Korea. International Journal of Hygiene and Environmental Health, 211, 82–87.CrossRefGoogle Scholar
  40. Minami, T., Sohrin, Y., & Ueda, J. (2005). Determination of chromium, copper and lead in river water by graphite-furnace atomic absorption spectrometry after coprecipitation with terbium hydroxide. Analytical Sciences, 21, 1519–1522.CrossRefGoogle Scholar
  41. Naeemullah, Kazi, T. G., Tuzen, M., Afridi, H. I., & Citak, D. (2014). Development of a new green non dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry. Analytical Chimica Acta, 812, 59–64.Google Scholar
  42. Nair, U., Bartsch, H., & Nair, J. (2004). Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis, 19, 251–262.CrossRefGoogle Scholar
  43. Narin, I., Soylak, M., Kayakirilmaz, K., Elci, L., & Dogan, M. (2003). Preparation of a chelating resin by immobilizing 1-(2-pyridylazo) 2-naphtol on amberlite XAD-16 and its application of solid phase extraction of Ni (II), Cd (II), Co (II), Cu (II), Pb (II), and Cr (III) in natural water samples. Analytical Letters, 36, 641–658.CrossRefGoogle Scholar
  44. Naseri, M. T., Hosseini, M. R. M., Assadi, Y., & Kiani, A. (2008). Rapid determination of lead in water samples by dispersive liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry. Talanta, 75, 56–62.CrossRefGoogle Scholar
  45. Nerín, C., Salafranca, J., Aznar, M., & Batlle, R. (2009). Critical review on recent developments in solventless techniques for extraction of analytes. Analytical and Bioanalytical Chemistry, 393, 809–833.CrossRefGoogle Scholar
  46. Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1(22), 1–6.Google Scholar
  47. Golia, E., Dimirkou, A., & Mitsios, I. (2007). Accumulation of metals on tobacco leaves (primings) grown in an agricultural area in relation to soil. Bulletin of Environmental Contamination and Toxicology, 79, 158–162.Google Scholar
  48. Olmedilla, B., & Granado, F. (2000). Growth and micronutrient needs of adolescents. European Journal of Clinical Nutrition, 54, S11–S15.CrossRefGoogle Scholar
  49. Panhwar, A. H., Kazi, T. G., Afridi, H. I., Arain, S. A., Naeemullah, Brahman, K. D., & Arain, M. S. (2015). A new solid phase microextraction method using organic ligand in micropipette tip syringe system packed with modified carbon cloth for preconcentration of cadmium in drinking water and blood samples of kidney failure patients. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 296–302.CrossRefGoogle Scholar
  50. Parmar, G., Sangwan, P., Vashi, P., Kulkarni, P., & Kumar, S. (2008). Effect of chewing a mixture of areca nut and tobacco on periodontal tissues and oral hygiene status. Journal of Oral Science, 50, 57–62.CrossRefGoogle Scholar
  51. Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 1–15.CrossRefGoogle Scholar
  52. Pokras, M. A., & Kneeland, M. R. (2008). Lead poisoning: using trans disciplinary approaches to solve an ancient problem. EcoHealth, 5, 379–385.CrossRefGoogle Scholar
  53. Prozialeck, W. C., Edwards, J. R., & Woods, J. M. (2006). The vascular endothelium as a target of cadmium toxicity. Life Sciences, 79, 1493–1506.CrossRefGoogle Scholar
  54. Prozialeck, W. C., Edwards, J. R., Nebert, D. W., Woods, J. M., Barchowsky, A., & Atchison, W. D. (2008). The vascular system as a target of metal toxicity. Toxicological Sciences, 102, 207–218.CrossRefGoogle Scholar
  55. Ratzon, N., Froom, P., Leikin, E., Kristal-Boneh, E., & Ribak, J. (2000). Effect of exposure to lead on postural control in workers. Occupational and Environmental Medicine, 57, 201–203.CrossRefGoogle Scholar
  56. Rogan, W. J., & Ware, J. H. (2003). Exposure to lead in children-How low is low enough? New England Journal of Medicine, 348, 1515–1516.CrossRefGoogle Scholar
  57. Rozi, S., & Akhtar, S. (2007). Prevalence and predictors of smokeless tobacco use among high-school males in Karachi, Pakistan. Eastern Mediterranean Health Journal, 13, 916–924.Google Scholar
  58. Schulz, C., Angerer, J., Ewers, U., & Kolossa-Gehring, M. (2007). The German Human Biomonitoring Commission. International Journal of Hygiene and Environmental Health, 210, 373–382.CrossRefGoogle Scholar
  59. Selevan, S. G., Rice, D. C., Hogan, K. A., Euling, S. Y., Pfahles-Hutchens, A., & Bethel, J. (2003). Blood lead concentration and delayed puberty in girls. New England Journal of Medicine, 348(16), 1527–1536.CrossRefGoogle Scholar
  60. Shah, F., Kazi, T. G., Afridi, H. I., Khan, S., Kolachi, N. F., Arain, M. B., & Baig, J. A. (2011). The influence of environmental exposure on lead concentrations in scalp hair of children in Pakistan. Ecotoxicology and Environmental Safety, 74, 727–732.CrossRefGoogle Scholar
  61. Soylak, M., & Topalak, Z. (2012). Enrichment-separation and determinations of cadmium (II) and lead (II)-1-phenyl-1H-tetrazole-5-thiol chelates on Diaion SP-207 by solid phase extraction-flame atomic absorption spectrometry. Arabian Journal of Chemistry. doi: 10.1016/j.arabjc.2012.04.043.Google Scholar
  62. Sravrides, J. C. (2006). Lung carcinogenesis: pivotal role of metals in tobacco smoke. Free Radical Biology & Medicine, 41, 1017–1030.Google Scholar
  63. Staessen, J. A., Nawrot, T., Hond, E. D., Thijs, L., Fagard, R., Hoppenbrouwers, K., Koppen, G., Nelen, V., Schoeters, G., Vanderschueren, D., Van Hecke, E., Verschaeve, L., Vlietinck, R., & Roels, H. A. (2001). Renal function, cytogenetic measurements, and sexual development in adolescents in relation to environmental pollutants: a feasibility study of biomarkers. The Lancet, 357, 1660–1669.CrossRefGoogle Scholar
  64. Stephen, K. P. (2001). Green chemistry. Chemical & Engineering News, 79, 27–34.Google Scholar
  65. Subramanian, S. V., Nandy, S., Kelly, M., Gordon, D., & Smith, G. D. (2004). Patterns and distribution of tobacco consumption in India, cross sectional multilevel evidence from the 1998 to 1999 national family health survey. British Medical Journal, 328, 801–806.CrossRefGoogle Scholar
  66. Torrente, M., Colomina, M. T., & Domingo, J. L. (2005). Metal concentrations in hair and cognitive assessment in an adolescent population. Biological Trace Element Research, 104, 215–221.CrossRefGoogle Scholar
  67. Trujillo-Rodríguez, M. J., Rocío-Bautista, P., Pino, V., & Afonso, A. M. (2013). Ionic liquids in dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry, 51, 87–106.CrossRefGoogle Scholar
  68. Vaziri, N., & Khan, M. (2007). Interplay of reactive oxygen species and nitric oxide in the pathogenesis of experimental lead‐induced hypertension. Clinical and Experimental Pharmacology and Physiology, 34, 920–925.CrossRefGoogle Scholar
  69. Vereecken, C. A., Maes, L., & De Bacquer, D. (2004). The influence of parental occupation and the pupils’ educational level on lifestyle behaviors among adolescents in Belgium. Journal of Adolescent Health, 34, 330–338.CrossRefGoogle Scholar
  70. Verstraeten, S., Aimo, L., & Oteiza, P. (2008). Aluminium and lead: molecular mechanisms of brain toxicity. Archives of Toxicology, 82(11), 789–802, doi: 10.1007/s00204-008-0345-3.
  71. Vögeli-Lange, R., & Wagner, G. J. (1990). Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves implication of a transport function for cadmium-binding peptides. Plant Physiology, 92, 1086–1093.CrossRefGoogle Scholar
  72. Wang, C., Huang, L., Zhou, X., Xu, G., & Shi, Q. (2004). Blood lead levels of both mothers and their newborn infants in the middle part of China. International Journal of Hygiene and Environmental Health, 207, 431–436.CrossRefGoogle Scholar
  73. Weaver, V. M., Davoli, C. T., Murphy, S. E., Sunyer, J., Heller, P. J., Colosimo, S. G., & Groopman, J. D. (1996). Environmental tobacco smoke exposure in inner-city children. Cancer Epidemiology, Biomarkers & Prevention, 5, 135–137.Google Scholar
  74. Wilhelm, M., Schulz, C., & Schwenk, M. (2006). Revised and new reference values for arsenic, cadmium, lead, and mercury in blood or urine of children: basis for validation of human biomonitoring data in environmental medicine. International Journal of Hygiene and Environmental Health, 209, 301–305.CrossRefGoogle Scholar
  75. Yousefi, S. R., & Shemirani, F. (2010). Development of a robust ionic liquid–based dispersive liquid–liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: application to the determination of Pb and Cd. Analytica Chimica Acta, 669, 25–31.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sadaf Sadia Arain
    • 1
  • Tasneem Gul Kazi
    • 1
  • Hassan Imran Afridi
    • 1
  • Kapil Dev Brahman
    • 1
  • Naeemullah
    • 1
  • Sumaira Khan
    • 1
  • Abdul Haleem Panhwar
    • 1
  • Muhammad Afzal Kamboh
    • 2
  • Jamil R. Memon
    • 3
  1. 1.National Center of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan
  2. 2.Department of Chemistry, Faculty of ScienceUniversiti TeknologiJohor BahruMalaysia
  3. 3.Dr. M.A. Kazi Institute of ChemistryUniversity of SindhJamshoroPakistan

Personalised recommendations