Exploring the multiplicity of soil–human interactions: organic carbon content, agro-forest landscapes and the Italian local communities

  • Luca Salvati
  • Pier Matteo Barone
  • Carlotta Ferrara


Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.


Soil organic carbon Topsoil organic carbon Socioeconomic indicators Multidimensional analysis Mediterranean region 



The authors would like to thank T. Ceccarelli, L. Perini and M. Zitti for continuous technical support during the investigation. L. Salvati was supported by AGROSCENARI research project, financed by the Italian Ministry of Agriculture and Forestry Policies. The present study has been carried out in the framework of the joint research agreement within CRA-CMA and University of Rome ‘La Sapienza’.

Supplementary material

10661_2015_4534_MOESM1_ESM.docx (128 kb)
ESM 1 (DOCX 127 kb)


  1. Adewopo, J. B., Van Zomeren, C., Bhomia, R. K., Almaraz, M., Bacon, A. R., Eggleston, E., Judy, J. D., Lewis, R. W., Lusk, M., Miller, B., Moorberg, C., Snyder, E. H., & Tiedeman, M. (2014). 12 top-ranked priority research questions for soil science in the 21st century. Soil Science Society of America Journal, 78, 337–347. doi: 10.2136/sssaj2013.07.0291.CrossRefGoogle Scholar
  2. Albaladejo, J., Ortiz, R., Garcia-Franco, N., Ruiz, N. A., Almagro, M., Pintado, J. G., & Martínez-Mena, M. (2013). Use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 13, 265–277. doi: 10.1007/s11368-012-0617-7.CrossRefGoogle Scholar
  3. Amundson, R. (2001). The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29, 535–562. doi: 10.1146/annurev.earth.29.1.535.CrossRefGoogle Scholar
  4. Azqueta, D., & Soltelsek, D. (2007). Valuing nature: From environmental impacts to natural capital. Ecological Economics, 63, 22–30. doi: 10.1016/j.ecolecon.2007.02.029.CrossRefGoogle Scholar
  5. Bai, J., Xiao, R., Zhang, K., Gao, H., Cui, B., & Liu, X. (2013). Soil organic carbon as affected by land use in young and old reclaimed regions of a coastal estuary wetland, China. Soil Use and Management, 29, 57–64. doi: 10.1111/sum.12021.CrossRefGoogle Scholar
  6. Bationo, A., Kihara, J., Vanlauw, B., Waswa, B., & Kimetu, J. (2007). Soil organic carbon dynamics., functions and management in West African agro-ecosystems. Agricultural Systems, 94, 13–25. doi: 10.1016/j.agsy.2005.08.011.CrossRefGoogle Scholar
  7. Batjes, N. H. (2014). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65, 10–21. doi: 10.1111/ejss.12114_2.CrossRefGoogle Scholar
  8. Booker, K., Huntsinger, L., Bartolome, J. W., Sayre, N. F., & Stewart, W. (2013). What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? Global Environmental Change, 23, 240–251. doi: 10.1016/j.gloenvcha.2012.10.001.CrossRefGoogle Scholar
  9. Briassoulis, H. (2011). Governing desertification in Mediterranean Europe: The challenge of environmental policy integration in multi-level governance contexts. Land Degradation and Development, 22, 313–325. doi: 10.1002/ldr.1018.CrossRefGoogle Scholar
  10. Carvalho-Ribeiro, S. M., Lovett, A., & O’Riordan, T. (2010). Multifunctional forest management in Northern Portugal: Moving from scenarios to governance for sustainable development. Land Use Policy, 27, 1111–1122. doi: 10.1016/j.landusepol.2010.02.008.CrossRefGoogle Scholar
  11. Colantoni, A., Ferrara, C., Perini, L., & Salvati, L. (2014). Assessing trends in climate aridity and vulnerability to soil degradation in Italy. Ecological Indicators, 48, 599–604. doi: 10.1016/j.ecolind.2014.09.031.CrossRefGoogle Scholar
  12. Corona, P., Ferrara, A., & La Marca, O. (1997). Sustainable management of forests for atmospheric CO2 depletion. Journal of Sustainable Forestry, 5(3–4), 81–91. doi: 10.1300/J091v05n03_05.CrossRefGoogle Scholar
  13. Costanza, R., D’Arge, R., DeGroot, R., Farber, S., Grasso, M., Hannon, B., Limbur, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & Van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. doi: 10.1038/387253a0.CrossRefGoogle Scholar
  14. Cowie, A. L., Penman, T. D., Gorissen, L., Winslow, M. D., Lehmann, J., Tyrrell, T. D., Twomlow, S., Wilkes, A., Lal, R., Jones, J. W., Paulsch, A., Kellner, K., & Akhtar-Schuste, M. (2011). Towards sustainable land management in the drylands: scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degradation and Development, 22, 248–260. doi: 10.1002/ldr.1086.CrossRefGoogle Scholar
  15. Cramb, R. A. (2006). The role of social capital in the promotion of conservation farming: the case of ‘landcare’ in the Southern Philippines. Land Degradation & Development, 17(1), 23–30. doi: 10.1002/ldr.691.CrossRefGoogle Scholar
  16. Deutsch, L., Folke, C., & Skanberg, K. (2003). The critical natural capital of ecosystem performance as insurance for human wellbeing. Ecological Economics, 44, 205–217. doi: 10.1016/S0921-8009(02)00274-4.CrossRefGoogle Scholar
  17. Dong, X., Yang, W., Ulgiati, S., Yan, M., & Zhang, X. (2012). The impact of human activities on natural capital and ecosystem services of natural pastures in North Xinjiang, China. Ecological Modeling, 225, 28–39. doi: 10.1016/j.ecolmodel.2011.11.006.CrossRefGoogle Scholar
  18. Edmondson, J. L., Davies, Z. G., Gasto, K. J., & Leake, J. R. (2014). Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. Journal of Applied Ecology, 51, 880–889. doi: 10.1111/1365-2664.12254.CrossRefGoogle Scholar
  19. European Soil Bureau. (2014) Soil themes. Soil Erosion. Joint Research Centre, Ispra (http://eusoils.jrc.ec.europa.eu/library/themes/Erosion/ accessed April 2014).
  20. Ferrara, A., Salvati, L., Sabbi, A., & Colantoni, A. (2014a). Soil resources, land cover changes and rural areas: towards a spatial mismatch? Science of the Total Environment, 478, 116–122. doi: 10.1016/j.scitotenv.2014.01.040.CrossRefGoogle Scholar
  21. Ferrara, C., Moretti, V., Serra, P., Salvati, L. (2014b) Towards a sustainable agro-forest landscape? Assessing land degradation (1950–2010) and soil quality in Castelporziano forest and peri-urban Rome, Italy. Rend. Fis. Acc. Lincei. On-line 11 nov. 2014. DOI  10.1007/s12210-014-0354-5.
  22. Imeson, A. (2012). Desertification, land degradation and sustainability: Paradigms, processes, principles and policies. Chichester: Wiley-Blackwell. ISBN 9780470714485.Google Scholar
  23. Jones, R.J.A., Hiederer, R., Rusco, E., Loveland, P.J., Montanarella, L. (2004) The map of organic carbon in topsoils in Europe, Version 1.2, September 2003: Explanation of Special Publication Ispra 2004 No.72 (S.P.I.04.72). European Soil Bureau Research Report No.17, EUR 21209 EN, 26pp. and 1 map in ISO B1 format. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  24. Jones, R. J. A., Hiederer, R., Rusco, E., Loveland, P. J., & Montanarella, L. (2005). Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science, 56, 655–671. doi: 10.1111/j.1365-2389.2005.00728.x.CrossRefGoogle Scholar
  25. Kelly, C., Ferrara, A., Wilson, G. A., Ripullone, F., Nolè, A., Harmer, N., & Salvati, L. (2015). Community resilience and land degradation in forest and shrubland socio-ecological systems: A case study in Gorgoglione, Basilicata region, Italy. Land Use Policy, 46, 11–20. doi: 10.1016/j.landusepol.2015.01.026.CrossRefGoogle Scholar
  26. Lala, R. (2003). Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences, 22, 151–184. doi: 10.1080/713610854.CrossRefGoogle Scholar
  27. Lavalle, C., Baranzelli, C., Mubareka, S., Rocha Gomes, C., Hiederer, R., Batista, E., Silva, F., & Estreguil, C. (2011). Implementation of the CAP policy options with the land use modelling platform—A first indicator-based analysis—EUR 24909 EN (p. JRC66060). Luxembourg (Luxembourg): Publications Office of the European Union.Google Scholar
  28. Leeper, G. W., & Uren, N. C. (1993). Soil science, an introduction. Melbourne: Melbourne University Press. ISBN 0-522-84464-2.Google Scholar
  29. Leone, A. P., Leone, N., & Rampone, S. (2013). An application of vis-NIR reflectance spectroscopy and artificial neural networks to the prediction of soil organic carbon content in southern Italy. Fresenius Environmental Bulletin, 22, 1230–1238.Google Scholar
  30. Liu, Z., Shao, M., & Wang, Y. (2011). Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems and Environment, 142, 184–194. doi: 10.1016/j.agee.2011.05.002.CrossRefGoogle Scholar
  31. Lugato, E., Paustian, K., & Giardini, L. (2007). Modelling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agriculture, Ecosystems and Environment, 120, 423–432. doi: 10.1016/j.agee.2006.11.006.CrossRefGoogle Scholar
  32. Lugato, E., Panagos, P., Bampa, F., Jones, A., & Montanarella, L. (2014). A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20, 313–326. doi: 10.1111/gcb.12292.CrossRefGoogle Scholar
  33. Pearce, D. W., & Turner, R. K. (1990). Economics of natural resources and the environment. Hertfordshire: Harvester Wheatsheaf.Google Scholar
  34. Perini, L., Salvati, L., Zitti, M., Sorrenti, S., & Ceccarelli, T. (2008). La desertificazione in Italia. Roma-Acireale: Bonanno. ISBN 978-88-7796-422-9.Google Scholar
  35. Podmanicky, L., Balázs, K., Belényesi, M., Centeri, C., Kristóf, D., & Kohlheb, N. (2011). Modelling soil quality changes in Europe. an impact assessment of land use change on soil quality in Europe. Ecological Indicators, 11, 4–15. doi: 10.1016/j.ecolind.2009.08.002.CrossRefGoogle Scholar
  36. Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6, 317–327. doi: 10.3334/CDIAC/tcm.009.CrossRefGoogle Scholar
  37. Proyuth, L., Didier, P., Lamballe, P., & de Neergaarda, A. (2012). Evaluation of bamboo as an alternative cropping strategy in the northern central upland of Vietnam: Above-ground carbon fixing capacity, accumulation of soil organic carbon, and socio-economic aspects. Agriculture, Ecosystems & Environment, 149, 80–90. doi: 10.1016/j.agee.2011.12.013.CrossRefGoogle Scholar
  38. Randerson, J. (2004). Organic farming increases biodiversity, New Scientist, Oct 2004Google Scholar
  39. Roseta-Palma, C., Ferreira-Lopes, A., & Sequeira, T. N. (2010). Externalities in an endogenous growth model with social and natural capital. Ecological Economic, 69, 603–612. doi: 10.1016/j.ecolecon.2009.09.008.CrossRefGoogle Scholar
  40. Salvati, L. (2014). A socioeconomic profile of vulnerable lands to desertification in Italy. Science of the Total Environment, 466–467, 287–299. doi: 10.1016/j.scitotenv.2013.06.091.CrossRefGoogle Scholar
  41. Salvati, L., & Carlucci, M. (2011). The economic and environmental performances of rural districts in Italy: Are competitiveness and sustainability compatible targets? Ecological Economics, 70, 2446–2453. doi: 10.1016/j.ecolecon.2011.07.030.CrossRefGoogle Scholar
  42. Salvati, L., & Zitti, M. (2009). Multivariate analysis of socio-economic indicators to estimate land degradation sensitivity: A case study applied to a Mediterranean area. International Journal of Ecological Economics and Statistics, 15, 93–102. ISSN: 0973–7537.Google Scholar
  43. Salvati, L., Tombolini, I., Perini, L., & Ferrara, A. (2013). Landscape changes and environmental quality: The evolution of land vulnerability and potential resilience to degradation in Italy. Regional Environmental Change, 13, 1223–1233. doi: 10.1007/s10113-013-0437-3.CrossRefGoogle Scholar
  44. Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kogel-Knabne, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. doi: 10.1038/nature10386.CrossRefGoogle Scholar
  45. Smith, P. (2004). Soils as carbon sinks: The global context. Soil Use Management, 20, 212–218. doi: 10.1111/j.1475-2743.2004.tb00361.x.CrossRefGoogle Scholar
  46. Smith, P., Falloon, P. (2005) Carbon sequestration in European croplands. In H. Griffiths, P.J. Jarvis (Eds.), The carbon balance of forest biomes. Taylor & Francis, pp. 47–55. ISBN 1 85996 214 9.Google Scholar
  47. Sommer, R., & Bossio, D. (2014). Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management, 144, 83–87. doi: 10.1016/j.jenvman.2014.05.017.CrossRefGoogle Scholar
  48. Trisorio, A. (2005). The sustainability of Italian agriculture, Italian National Institute of Agricultural. Rome: Economics.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luca Salvati
    • 1
  • Pier Matteo Barone
    • 2
  • Carlotta Ferrara
    • 3
  1. 1.Consiglio per la Ricerca e la sperimentazione in AgricolturaCentre for the Study of Plant–Soil Interactions (CRA-RPS)RomeItaly
  2. 2.Archaeology and Classics ProgramThe American University of RomeRomeItaly
  3. 3.Department of Agriculture, Forests, Nature and Energy (DAFNE)Viale dell’AgricolturaCittaducaleItaly

Personalised recommendations