Freshwater diatoms as environmental indicators: evaluating the effects of eutrophication using species morphology and biological indices

  • Annika Vilmi
  • Satu Maaria Karjalainen
  • Victor L. Landeiro
  • Jani Heino


Anthropogenic eutrophication is a major form of perturbation in freshwaters, and several approaches aim to recognise its effects on lake ecosystems. We compared the responses of diatom species morphology, diversity indices and diatom indices to total phosphorus, total nitrogen and distance from a point stressor causing eutrophication in a large lake. We specifically examined the degree to which extent nutrients and distance to the stressor affect variation in the values of various biological indices and diatom valve size. In addition, special attention was given to the adequate repetition of diatom valve width measurements in the context of environmental assessment. Our results showed that diatom valve width was a better indicator of nutrient concentrations than any of the diatom and diversity indices examined. However, the results varied between the two study transects, suggesting that the diatom-based variables not only respond to nutrients but also to other environmental factors (e.g. shoreline morphology). We also found that when using the method based on diatom morphology, one should measure more valves than has been originally suggested to provide a more reliable picture of response to eutrophication. We argue that diatom morphology could be considered as an additional environmental assessment tool, because it may complement the information provided by the traditional diatom indices. Diatom valve width may also be more sensitive to early phases of the eutrophication process and its effects on freshwater ecosystems than various diatom indices that were developed in regional contexts with wide ranges in nutrient levels.


Achnanthidium minutissimum s.l Lake assessment Diatoms Littoral Nutrient enrichment 



This study was supported by grants from Maj and Tor Nessling Foundation, Kuusamon energia- ja vesiosuuskunta, Maa ja vesitekniikan tuki ry, Olvi Foundation and Oulangan rahasto. We thank Tommi Karhu for field assistance. In addition, we thank the two anonymous reviewers for their comments on the previous version of the manuscript.


  1. Anderson, M. J., & Gribble, N. A. (1998). Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Australian Journal of Ecology, 23, 158–167.CrossRefGoogle Scholar
  2. Besse-Lototskaya, A., Verdonschot, P. F. M., Coste, M., & Van de Vijver, B. (2011). Evaluation of European diatom trophic indices. Ecological Indicators, 11, 456–467.CrossRefGoogle Scholar
  3. Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623–2632.CrossRefGoogle Scholar
  4. Bourrelly, P. (1981). Les Algues d’Eau Douce. Initiation à la Systématique. Tome II: Les Algues Jaunes er Brunes. Chrysophycées, Phéophycées, Xanthophycées et Diatomées. Paris: Boubée & Cie.Google Scholar
  5. Cemagref (1982). Etude des méthodes biologiques quantitatives d’appréciation de la qualité des eaux. Rapport Division Qualité des Eaux Lyon, Agence financière de Bassin Rhone - Méditerranée -Corse, Pierre-Bénite.Google Scholar
  6. Coste, M., & Ayphassorho, H. (1991). Etude de la qualité des eaux du Bassin Artois-Picardie à l’aide des communautés de diatomées benthiques (Application des indices diatomiques). Rapport Cemagref, Bordeaux, Agence de l’Eau Artois-Picardie, Douai. Google Scholar
  7. Dixit, S. S., Smol, J. P., Kingston, J. C., & Charles, D. F. (1992). Diatoms: powerful indicators of environmental change. Environmental Science & Technology, 26, 22–33.CrossRefGoogle Scholar
  8. Donohue, I., Donohue, L. A., Ní Aínín, B., & Irvine, K. (2009). Assessment of eutrophication pressure on lakes using littoral invertebrates. Hydrobiologia, 633, 105–122.CrossRefGoogle Scholar
  9. Friberg, N. (2014). Impacts and indicators of change in lotic ecosystems. WIREs Water. doi: 10.1002/wat2.1040.Google Scholar
  10. Gottschalk, S., & Kahlert, M. (2012). Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients. Hydrobiologia, 694, 41–56.CrossRefGoogle Scholar
  11. Heino, J., Bini, L. M., Karjalainen, S. M., Mykrä, H., Soininen, J., Vieira, L. C. G., et al. (2010). Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos, 119, 129–137.CrossRefGoogle Scholar
  12. Heino, J. (2013). The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews, 88, 166–178.CrossRefGoogle Scholar
  13. Hering, D., Johnson, R. K., Kramm, S., Schmutz, S., Szoszkiewicz, K., & Verdonschot, P. F. M. (2006). Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology, 51, 1757–1785.CrossRefGoogle Scholar
  14. Jarlman, A., & Kahlert, M. (2009). Påväxt i rinnande vatten—kiselalgsanalys, version 3:1. Handledning för miljöövervakning, Naturvårdsverket.Google Scholar
  15. Jeppesen, E., Jensen, J. P., Jensen, C., Faafeng, B., Hessen, D. O., Søndergaard, M., et al. (2003). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems, 6, 313–325.CrossRefGoogle Scholar
  16. Jeppesen, E., Lauridsen, T. L., Mitchell, S. F., Christoffersen, K., & Burns, C. W. (2000). Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research, 22, 951–968.CrossRefGoogle Scholar
  17. Jørgensen, S. E., Burkhard, B., & Müller, F. (2013). Twenty volumes of ecological indicators – An accounting short review. Ecological Indicators, 28, 4–9.CrossRefGoogle Scholar
  18. Kahlert, M., Albert, R.-L., Anttila, E.-L., Bengtsson, R., Bigler, C., Eskola, T., et al. (2009). Harmonization is more important than experience—results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream monitoring). Journal of Applied Phycology, 21, 471–482.CrossRefGoogle Scholar
  19. Kahlert, G., & Gottschalk, S. (2014). Differences in benthic diatom assemblages between streams and lakes in Sweden and implications for ecological assessment. Freshwater Science, 33(2), 655–669.CrossRefGoogle Scholar
  20. Kelly, M., Urbanic, G., Acs, E., Bennion, H., Bertrin, V., Burgess, A., et al. (2014). Comparing aspirations: intercalibration of ecological status concepts across European lakes for littoral diatoms. Hydrobiologia, 734(1), 125–141.CrossRefGoogle Scholar
  21. Kolada, A. (2014). The effect of lake morphology on aquatic vegetation development and changes under the influence of eutrophication. Ecological Indicators, 38, 282–293.CrossRefGoogle Scholar
  22. Lecointe, C., Coste, M., & Prygiel, J. (1993). “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 269(270), 509–513.CrossRefGoogle Scholar
  23. Legendre, P., & Legendre, L. (2012). Numerical Ecology (3rd ed.). Amsterdam: Elsevier.Google Scholar
  24. Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.CrossRefGoogle Scholar
  25. Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H., & The Metacommunity Working Group. (2011). Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution, 26, 482–491.CrossRefGoogle Scholar
  26. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., et al. (2013). Package ‘vegan’.,
  27. Potapova, M. G., & Charles, D. F. (2002). Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography, 29, 167–187.CrossRefGoogle Scholar
  28. Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, 26, 329–358.Google Scholar
  29. Rapport, D. J., & Hildén, M. (2013). An evolving role for ecological indicators: from documenting ecological conditions to monitoring drivers and policy responses. Ecological Indicators, 28, 10–15.CrossRefGoogle Scholar
  30. Ronkanen, A.-K., & Kløve, B. (2009). Long-term phosphorus and nitrogen removal processes and preferential flow paths in Northern constructed peatlands. Ecological Engineering, 35, 843–855.CrossRefGoogle Scholar
  31. Rott, E., Hofmann, G., Pall, K., Pfister, P., & Pipp, E. (1997). Indikationslisten für Aufwuchsalgen Teil 1: Saprobielle indikation. Bundesministerium für Land- und Fortwirtschaft, Wien.Google Scholar
  32. Rott, E., Pipp, E., Pfister, P., van Dam, H., Ortler, K., Binder, N., et al. (1999). Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewässern Teil 2: Trophieindikation. Bundesministerium für Land- und Forstwirtschaft, Wien.Google Scholar
  33. Round, F., Crawford, R., & Mann, D. (2007). The diatoms (5th ed.). Cambridge: Cambridge University Press.Google Scholar
  34. Rumeau, A., & Coste, M. (1988). Initiation a la systématique des diatomées d’eau douce. Bulletin Francais de la Peche et de la Pisciculture, 309, 1–69.CrossRefGoogle Scholar
  35. Schneider, S. C., Cara, M., Eriksen, T. E., Goreska, B. B., Imeri, A., Kupe, L., et al. (2014). Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica, 44, 90–97.CrossRefGoogle Scholar
  36. Schneider, S. C., Lawniczak, A. E., Picińska-Faltynowicz, J., & Szoszkiewicz, K. (2012). Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica, 42, 204–211.CrossRefGoogle Scholar
  37. Siqueira, T., Durães, L.D., & Roque, F.d.O. (2014). Predictive modelling of insect metacommunities in biomonitoring of aquatic networks. In C. Ferreira & W. Godoy (Eds.), Ecological modelling applied to entomology. Entomology in focus volume 1 (pp. 109–126). Switzerland: Springer.Google Scholar
  38. SFS-EN 13946 (2003). Veden laatu. Jokivesien piilevien näytteenotto ja esikäsittely. Suomen standardisoimisliitto SFS ry, Helsinki.Google Scholar
  39. SFS-EN 14407 (2005). Water quality. Guidance standard for the identification, enumeration and interpretation of benthic diatom samples from running waters. Suomen standardisoimisliitto SFS ry, Helsinki.Google Scholar
  40. Stoffels, R. J., Clarke, K. R., & Closs, G. P. (2005). Spatial scale and benthic community organisation in the littoral zones of large oligotrophic lakes: potential for cross-scale interactions. Freshwater Biology, 50, 1131–1145.CrossRefGoogle Scholar
  41. Tolonen, K. T., Holopainen, I. J., Hämäläinen, H., Rahkola-Sorsa, M., Ylöstalo, P., Mikkonen, K., et al. (2005). Littoral species diversity and biomass: concordance among organismal groups and the effects of environmental variables. Biodiversity and Conservation, 14, 961–980.CrossRefGoogle Scholar
  42. Vadeboncoeur, Y., Vander Zanden, M. J., & Lodge, D. M. (2002). Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience, 52, 44–54.CrossRefGoogle Scholar
  43. Winfield, I. J. (2004). Fish in the littoral zone: ecology, threats and management. Limnologica, 34, 124–131.CrossRefGoogle Scholar
  44. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555–561.CrossRefGoogle Scholar
  45. Vyverman, W., Verleyen, E., Sabbe, K., Vanhoutte, K., Sterken, M., Hodgson, D. A., et al. (2007). Historical processes constrain patterns in global diatom diversity. Ecology, 88, 1924–19.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Annika Vilmi
    • 1
  • Satu Maaria Karjalainen
    • 1
  • Victor L. Landeiro
    • 2
  • Jani Heino
    • 1
  1. 1.Organization Finnish Environment Institute DivisionOuluFinland
  2. 2.Departamento de Botânica e EcologiaUniversidade Federal do Mato GrossoCuiabáBrazil

Personalised recommendations