Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya

  • Florah Chirikona
  • Marko Filipovic
  • Seline Ooko
  • Francis Orata


A major ecological challenge facing Lake Victoria basin is the influx of chemical contaminants from domestic, hospital, and industrial effluents. Determined levels of perfluoroalkyl acids (PFAAs) in wastewater and sludge from selected wastewater treatment plants (WWTPs) in Kenya are presented and their daily discharge loads calculated for the first time within the Lake Victoria basin. Samples were extracted and separated using solid-phase extraction and ultra-performance liquid chromatography (UPLC)-MS/MS or LC-MS/MS methodology. All sewage sludge and wastewater samples obtained from the WWTPs contained detectable levels of PFAAs in picogram per gram dry weight (d.w.) and in nanogram per liter, respectively. There was variability in distribution of PFAAs in domestic, hospital, and industrial waste with domestic WWPTs observed to contain higher levels. Almost all PFAA homologues of chain length C-6 and above were detected in samples analyzed, with long-chain PFAAs (C-8 and above chain length) being dominant. The discharge from hospital contributes significantly to the amounts of PFAAs released to the municipal water systems and the lake catchment. Using the average output of wastewater from the five WWTPs, a mass load of 1013 mg day−1 PFAAs per day discharged has been calculated, with the highest discharge obtained at Kisumu City (656 mg day−1). The concentration range of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in wastewater was 1.3–28 and 0.9–9.8 ng L−1 and in sludge samples were 117–673 and 98–683 pg g−1, respectively.


Perfluoroalkyl acids Discharge WWTPs Wastewater Sludge UPLC-MS/MS Lake Victoria 



We acknowledge the Department of Applied Environmental Science (ITM), Stockholm University, where sample analysis was made possible.

Supplementary material

10661_2015_4425_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)


  1. 3M Company (2001). Material Safety Data Sheet FC-26 FLUORAD Brand Fluorochemical Acid, ID Number/U.P.C.:ZF-0002-0376-8. Available at:
  2. 3M Company (2001). Environmental monitoring - multi-city study. (Water, sludge, sediment, POTW effluent and landfill leachate samples). Docket AR-226-1030a; U.S. Environmental Protection Agency, Office of Pollution and Prevention and Toxic Substances: Washington, DC.Google Scholar
  3. Ahrens, L., Taniyasu, S., Yeung, L. W. Y., Yamashita, N., Lam, P. K. S., & Ebinghaus, R. (2010). Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan. Chemosphere, 79, 266–272.CrossRefGoogle Scholar
  4. Alzaga, R., & Bayone, J. M. (2004). Determination of perfluorocarboxylic acids in aqueous matrices by ion-pair solid-phase microextraction–in-port derivatization–gas chromatography–negative ion chemical ionization mass spectrometry. Journal of Chromatography A, 1042, 155–162.CrossRefGoogle Scholar
  5. Becker, A. M., Gerstmann, S., & Frank, H. (2008). Perfluorooctane surfactants in wastewaters, the major source of river pollution. Chemosphere, 72, 115–121.CrossRefGoogle Scholar
  6. Bossi, R., Strand, J., Sortkjaer, O., & Larsen, M. M. (2008). Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments. Environmental International, 34, 443–450.CrossRefGoogle Scholar
  7. Boulanger, B., Peck, A. M., Schnoor, J. L., & Hornbuckle, K. C. (2005). Mass budget of perfluorooctane surfactants in Lake Ontario. Environmental Science & Technology, 39(6), 1920.CrossRefGoogle Scholar
  8. Brooke, D., Footitt, A., & Nwaogu, T. A. (2004). Environmental risk evaluation report: perfluorooctane sulfonate (PFOS). London UK: UK Environment Agency, 5–51. Accessed 14 Sept 2004.
  9. Buck, R. C., Frankline, J., Beerger, U., Conder, J. M., Colinsin, I. T., De Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & Van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl in the environment: terminology, classification and origin. Integrated Environmental Assessment Management, 7(4), 513–541.CrossRefGoogle Scholar
  10. Chaney, R. L., Ryan, J. A., & O’Connor, G. A. (1996). Organic contaminants in municipal biosolids: risk assessment, quantitative pathways analysis, and current research priorities. Science of the Total Environment, 185, 187–216.CrossRefGoogle Scholar
  11. Conder, J. M., Hoke, R. A., Wolf, W. D., Russel, M. H., & Buck, R. C. (2008). Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environmental Science & Technology, 42, 995–1003.CrossRefGoogle Scholar
  12. Dinglasan, M. J. A., Ye, Y., Edwards, E. A., & Mabury, S. A. (2004). Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environmental Science & Technology, 38, 2857–2864.CrossRefGoogle Scholar
  13. Domingo, J. L. (2012). Health risks of dietary exposure to perfluorinated compounds. Environmental International, 40, 187–195.CrossRefGoogle Scholar
  14. European Commission (2013). Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, 24.8, L 226/1. Accessed 20–24 Aug 2013.
  15. Filipovic, M., & Berger, U. (2014). Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? Chemosphere. doi: 10.1016/j.chemosphere.2014.07.082.Google Scholar
  16. Filipovic, M., Woldegiorgis, A., Norström, K., Bibi, M., Lindberg, M., & Österås, A.-H. (2014). Historical usage of aqueous film forming foam: a case study of the widespread distribution of perfluoroalkyl acids from a military airport to groundwater, lakes, soils and fish. Chemosphere. doi: 10.1016/j.chemosphere.2014.09.005.Google Scholar
  17. Fromme, H., Tittlemier, S. A., Volkel, W., Wilhelm, M., & Twardella, D. (2009). Perfluorinated compounds—exposure assessment for the general population in western countries. International Journal of Hygiene and Environmental Health, 212, 239–270.CrossRefGoogle Scholar
  18. Guo, R., Zhou, Q., Cai, Y., & Jiang, G. (2008). Determination of perfluorooctanesulfonate and perfluorooctanoic acid in sewage sludge samples using liquid chromatography/quadrupole time-of-flight mass spectrometry. Talanta, 75, 1394–1399.CrossRefGoogle Scholar
  19. Guo, R., Sim, W.-J., Lee, E.-S., Lee, J.-H., & Oh, J.-E. (2010). Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Research, 44, 3476–3486.CrossRefGoogle Scholar
  20. Higgins, C. P., Field, J. A., Criddle, C. S., & Luthy, R. G. (2005). Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environmental Science & Technology, 39, 3946–3956.CrossRefGoogle Scholar
  21. Holzer, J., Midasch, O., Rauchfuss, K., Kraft, M., Reupert, R., Angerer, J., Kleeschulte, P., Marschall, N., & Wilhelm, M. (2008). Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environmental Health Perspectives, 116(5), 651–657.CrossRefGoogle Scholar
  22. Houde, M., Martin, J. W., Letcher, R. J., Solomon, K. R., & Muir, D. C. G. (2006). Biological monitoring of polyfluoroalkyl substances, a review. Environmental Science & Technology, 40, 346–3473.Google Scholar
  23. Hu, J., Yu, J., Tanaka, S., & Fujii, S. (2011). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in WATER ENVIRONMENT of Singapore. Water, Air, & Soil Pollution, 216, 179–191.CrossRefGoogle Scholar
  24. Huset, C. A., Chiaia, A. C., Barofsky, D. F., Jonkers, N., Kohler, H. P., Ort, C., Giger, D. W., & Field, J. A. (2008). Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland. Environmental Science & Technology, 42(17), 6369–6377.CrossRefGoogle Scholar
  25. Kallenborn, R., Berger, U., & Järnberg, U. (2004). Perfluorinated alkylated substances (PFASs) in the Nordic environment (p. 552). Copenhagen DK: Nordic Council Publication.Google Scholar
  26. Kima, S.-K., Imb, J.-K., Kangb, Y.-M., Jungb, S.-Y., Khoc, Y. L., & Zoh, K.-D. (2012). Wastewater treatment plants (WWTPs)-derived national discharge loads of perfluorinated compounds (PFCs). Journal of Hazardous Materials, 201–202, 82–91.CrossRefGoogle Scholar
  27. Kissa, E. (2001). Fluorinated Surfactants and Repellant (2nd ed.). New York: Marcel Dekker.Google Scholar
  28. Kudo, N., Suzuki-Nakajima, E., Mitsumoto, A., & Kawashima, Y. (2006). Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal β-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biological and Pharmaceutical Bulletin, 29, 1952–1957.CrossRefGoogle Scholar
  29. Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., & Seed, J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological Sciences, 99, 366–394.CrossRefGoogle Scholar
  30. Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated compounds: past, present, and future. Environmental Science & Technology, 45.Google Scholar
  31. Loganathan, B. G., Sajwan, K. S., Sinclair, E., Senthil Kumar, K., & Kannan, K. (2007). Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research, 41(20), 4611–4620.CrossRefGoogle Scholar
  32. Lupton, S. J., Huwe, J. K., Smith, D. J., Dearfield, K. L., & Johnston, J. J. (2012). Absorption and excretion of 14C-perfluorooctanoic acid (PFOA) in angus cattle (Bos taurus). Environmental Science & Technology, 46, 1128–1134.CrossRefGoogle Scholar
  33. Ma, R., & Shih, K. (2010). Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environmental Pollution, 158, 1354–1362.CrossRefGoogle Scholar
  34. Martin, J. W., Smithwick, M. M., Braune, B. M., Hoekstra, P. F., Muir, D. C. G., & Mabury, S. A. (2004). Identification of long chain perfluorinated acids in biota from the Canadian arctic. Environmental Science & Technology, 38, 373–380.CrossRefGoogle Scholar
  35. Murakami, M., Imamura, E., Shinohara, H., Kiri, K., Muramatsu, Y., Harada, A., & Takada, H. (2008). Occurrence and sources of perfluorinated surfactants in rivers in Japan. Environmental Science & Technology, 42(17), 6566–6572.CrossRefGoogle Scholar
  36. Orata, F., Quinete, N., Werres, F., & Wilken R. D. (2009). Determination of perfluorooctanoic acid and perfluorooctane sulfonate in Lake Victoria Gulf Water. Bulletin of Environmental Contamination and Toxicology, 82(2), 218–222.Google Scholar
  37. Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science and Technology, 40, 32–44.CrossRefGoogle Scholar
  38. Rayne, S., & Forest, K. (2009). Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels, and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health, Part A, 44, 1145–1199.CrossRefGoogle Scholar
  39. RBA PTS, Sub-Saharan Africa Report (2002). UNEP/GEF: regionally based assessment of persistent toxic substances. <>.
  40. Rebecca, R. (2009). EPA finds record PFOS, PFOA levels in Alabama grazing fields. Environmental Science & Technology, 43(5), 1245–1246. doi: 10.1021/es803520c.CrossRefGoogle Scholar
  41. Riddell, N., Arsenault, G., Benskin, J. P., Chittim, B., Martin, J. W., McAlees, A., & Mc Crindle, R. (2009). Branched perfluorooctane sulfonate isomer quantification and characterization in real samples by HPLC/ESI-MS(/MS). Environmental Science & Technology, 43, 7902–7908.CrossRefGoogle Scholar
  42. Shivakoti, B. R., Tanak, S., Fuji, S., Kunacheva, C., Boontanon, S. K., Musirat, C., Seneviratne, S. T., & Tanaka, H. (2010). Occurrences and behavior of perfluorinated compounds (PFCs) in several wastewater treatment plants (WWTPs) in Japan and Thailand. Journal of Environmental Monitoring, 12, 1255–1264.CrossRefGoogle Scholar
  43. Sinclair, E., & Kannan, K. (2006). Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environmental Science & Technology, 40(5), 1408–1414.CrossRefGoogle Scholar
  44. Sindikui, O., Orata, F., Weber, R., & Osibanjo, O. (2013). Per and polyfluoroalkyl substances in selected sludge in Nigeria. Chemosphere, 92, 329–335.CrossRefGoogle Scholar
  45. Skutlarek, D., Exner, M., & Färber, H. (2006). Perfluorinated surfactants in surface and drinking waters. Environmental Science and Pollution Research, 13(5), 299–307.CrossRefGoogle Scholar
  46. Stockholm Convention (2009). In Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of its Fourth Meeting. UNEP/POPS/COP.4/38, 8 May 2009.Google Scholar
  47. Stockholm Convention (2013). Guidance on sampling, screening and analysis of persistent organic pollutants in products and articles. Relevant to the substances listed in Annexes A, B and C to the Stockholm Convention on Persistent Organic Pollutants in 2009 and 2011. Draft.Google Scholar
  48. Sun, H., Zhang, X., Wang, L., Zhang, T., Li, F., He, N., & Alder, A. C. (2012). Perfluoroalkyl compounds in municipal WWTPs in Tianjin, China—concentrations, distribution and mass flow. Environmental Science and Pollution Research International, 19(5), 1405–1415.CrossRefGoogle Scholar
  49. Taniyasu, S., Kannan, K., So, M. K., Gulkowska, A., Sinclair, E., Okazawa, T., & Yamashita, N. (2005). Analysis of fluorotelomer alcohols, fluorotelorner acids, and short- and long-chain perfluorinated acids in water and biota. Journal of Chromatography A, 1093, 89–97.Google Scholar
  50. Tsai, W.-T., Chen, H.-P., et al. (2002). A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. Journal of Loss Prevention in the Process Industries, 15, 65–75.CrossRefGoogle Scholar
  51. UBW (2009). Neue Ergebnisse des PFT-Messprogramms: Werte der Industriechemikalie gehen im Klärschlamm und im Abwasser weiter zurück. Würtemberg: Umweltministerium Baden.
  52. van Asselt, E. D., Rietra, R. P. J. J., Romkens, P. F. A. M., & van der Fels-Klerx, H. J. (2011). Perfluorooctane sulphonate (PFOS) throughout the food production chain. Food Chemistry, 128, 1–6.CrossRefGoogle Scholar
  53. Vestergren, R., Ullah, S., Cousins, I. T., & Berger, U. (2012). A matrix effect-free method for reliable quantification of perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids at low parts per trillion levels in dietary samples. Journal of Chromatography A, 1237, 64–71. doi: 10.1016/j.chroma.2012.03.023.CrossRefGoogle Scholar
  54. Vestergren, R., Orata, F., Berger, U., & Cousins, I. T. (2013). Bioaccumulation of perfluoroalkyl acids in dairy cows in a naturally contaminated environment. Environmental Science and Pollution Research. doi: 10.1007/s11356-013 - 1722-x.Google Scholar
  55. Wang, N., Szostek, B., Folsom, P. W., Sulecki, L. M., Capka, V., Buck, R. C., Berti, W. R., & Gannon, J. T. (2005). Aerobic biotransformation of C-14-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant. Environmental Science and Technology, 39, 531–538.CrossRefGoogle Scholar
  56. Wielsøe, M., Long, M., Ghisari, M., & Bonefeld-Jørgensen, E. C. (2014). Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere. doi: 10.1016/j.chemosphere.2014.10.014.Google Scholar
  57. Yoo, H., Washington, J. W., Jenkins, T. M., & Libelo, E. L. (2009). Analysis of perfluorinated chemicals in sludge: method development and initial results. Journal of Chromatography A, 1216, 7831–7839.CrossRefGoogle Scholar
  58. Yu, J., Hu, J., Tanaka, S., & Fujii, S. (2009). Perfluorooctanesulfonate (PFOs) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Research, 43, 2399–2408.CrossRefGoogle Scholar
  59. Zareitalabad, P., Siemens, J., Hamer, M., & Amelung, W. (2013). Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonic acid (PFOS) in surface water sediments soil and waste water—a review on concentration and distribution coefficients. Chemosphere, 91, 725–732.CrossRefGoogle Scholar
  60. Zhang, W., Zhang, Y., Taniyasu, S., Yeung, L. W. Y., Lam, P. K. S., Wang, J., Yamashita, N., & Dai, J. (2013). Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China. Environmental Pollution, 176, 10–17.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Pure and Applied ChemistryMasinde Muliro University of Science and TechnologyKakamegaKenya
  2. 2.Department of Applied Environmental Science (ITM)Stockholm UniversityStockholmSweden

Personalised recommendations