Coupling of remote sensing, field campaign, and mechanistic and empirical modeling to monitor spatiotemporal carbon dynamics of a Mediterranean watershed in a changing regional climate

  • S. Berberoglu
  • C. Donmez
  • F. Evrendilek


The aim of this study was to simulate impacts of regional climate change in the 2070s on carbon (C) cycle of a Mediterranean watershed combining field measurements, Envisat MERIS and IKONOS data, and the Carnegie Ames Stanford Approach model. Simulation results indicated that the present total C sink status (1.36 Mt C year−1) of Mediterranean evergreen needleleaf forest, grassland and cropland ecosystems is expected to weaken by 7.6 % in response to the climate change in the 2070s (Mt = 1012 g). This decreasing trend was mirrored in soil respiration (R H), aboveground and belowground net primary production (NPP), NEP, and net biome production (NBP). The decrease in NEP in the 2070s was the highest (21.9 %) for mixed forest where the smallest present C sink of 0.03 Mt C year−1 was estimated. The average present net ecosystem production (NEP) values were estimated at 110 ± 15, 75 ± 19, and 41 ± 25 g C m−2 years−1 in forest, grassland, and cropland, respectively, with a watershed-scale mean of 95 ± 30 g C m−2 years−1. The largest present C sink was in grassland, with a total C pool of 0.55 Mt C year−1, through its greater spatial extent.


Carbon sink Global climate change Mediterranean ecosystems Process-based modeling Spatiotemporal dynamics 



We are grateful to the Scientific and Technological Research Council (TUBITAK) of Turkey (TOVAG-JPN-04-103O011), and Research Institute for Humanity and Nature of Japan (RIHN) for funding this research project. We would like to thank valuable comments of two anonymous reviewers which significantly improved an earlier version of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aires, L., Pio, C., & Pereira, J. (2008). Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change Biology, 14, 539–555.CrossRefGoogle Scholar
  2. Allard, V., Ourcival, J. M., Rambal, S., Joffre, R., & Rocheteau, A. (2008). Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Global Change Biology, 14, 714–725.CrossRefGoogle Scholar
  3. Anthoni, P. M., Freibauer, A., Kolle, O., & Schulze, E. D. (2004). Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology, 121, 55–67.CrossRefGoogle Scholar
  4. Asner, G. P., Archer, S., & Hughes, R. F. (2003). Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Global Change Biology, 9, 316–335.CrossRefGoogle Scholar
  5. Aubinet, M., Moureaux, C., Bodson, B., Dufranne, D., Heinesch, B., Suleau, M., et al. (2009). Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle. Agricultural and Forest Meteorology, 149, 407–418.CrossRefGoogle Scholar
  6. Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., et al. (2001). Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1691.CrossRefGoogle Scholar
  7. Chen, M., & Zhuang, Q. (2014). Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus, B66, 21808.Google Scholar
  8. Chen, Z., Yu, G., Ge, J., Sun, X., Hirano, T., Saigusa, N., et al. (2013). Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agricultural and Forest Meteorology, 182–183, 266–276.CrossRefGoogle Scholar
  9. Chun-Jiang, L., Ilvesniemi, H., Berg, B., Kutsch, W., Yu-Sheng, Y., Xiang-Qing, M., et al. (2003). Aboveground litterfall in Eurasian forests. Journal of Forestry Research, 14, 27–34.CrossRefGoogle Scholar
  10. Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S. L., Don, A., et al. (2010). The European carbon balance. part 2: croplands. Global Change Biology, 16, 1409–1428.CrossRefGoogle Scholar
  11. Dash, J., & Curran, P. J. (2006). Relationship between herbicide concentration during the 1960s and 1970s and the contemporary MERIS terrestrial chlorophyll index (MTCI) for southern Vietnam. International Journal of Geographical Information Science, 20, 929–939.CrossRefGoogle Scholar
  12. Donmez, C., Berberoglu, S., Erdogan, M. A., Tanriover, A. A., & Cilek, A. (2015). Response of the regression tree model to high resolution remote sensing data for predicting percent tree cover in a Mediterranean ecosystem. Environmental Monitoring & Assessment, 187, 4 (in press).Google Scholar
  13. Eswaran, H., Berberoglu, S., Cangir, C., Boyraz, D., Zucca, C., Ozevren, E., et al. (2011). The anthroscape approach in sustainable land use, sustainable land management: learning from the past for the future. New York: Springer.Google Scholar
  14. Evrendilek, F. (2014). Modeling net ecosystem CO2 exchange using temporal neural networks after wavelet denoising. Geographical Analysis, 46, 37–52.CrossRefGoogle Scholar
  15. Evrendilek, F., & Wali, M. K. (2004). Changing global climate: historical carbon and nitrogen budgets and projected responses of Ohio’s cropland ecosystems. Ecosystems, 7, 381–392.CrossRefGoogle Scholar
  16. Evrendilek, F., Berberoglu, S., Taskinsu-Meydan, S., & Yilmaz, E. (2006). Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environmental Monitoring & Assessment, 119, 527–543.CrossRefGoogle Scholar
  17. Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., et al. (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 53–74.CrossRefGoogle Scholar
  18. Field, C. B., Randerson, J. T., & Malmstrom, C. M. (1995). Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51, 74–88.CrossRefGoogle Scholar
  19. Gervois, S., Ciais, P., Noblet-Ducoudre, N., Brisson, N., Vuichard, N., & Viovy, N. (2008). The carbon and water balance of European croplands throughout the 20th century. Global Biogeochemical Cycles, 22, GB2022.CrossRefGoogle Scholar
  20. Giardina, C. P., Ryan, M. G., Binkley, D., & Fownes, J. H. (2003). Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global Change Biology, 9, 1438–1450.CrossRefGoogle Scholar
  21. Goetz, S. J., Prince, S. D., Goward, N. S., Thawley, M. M., & Small, J. (1999). Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecological Modeling, 122, 239–255.CrossRefGoogle Scholar
  22. Grant, R. F., Baldocchi, D. D., & Ma, S. (2012). Ecological controls on net ecosystem productivity of a seasonally dry annual grassland under current and future climates: modelling with Ecosys. Agricultural and Forest Meteorology, 152, 189–200.CrossRefGoogle Scholar
  23. Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., et al. (2007). Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104, 12942–12945.CrossRefGoogle Scholar
  24. Haxeltine, A., & Prentice, I. C. (1996). BIOME3: an equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochemical Cycles, 10, 693–709.CrossRefGoogle Scholar
  25. Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources. Amsterdam: Elsevier.Google Scholar
  26. Hickler, T., Smith, B., Sykes, M. T., Davis, M., Sugita, S., & Walker, K. (2004). Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85, 519–530.CrossRefGoogle Scholar
  27. Hollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M., Hughes, H., et al. (2004). Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology, 10, 1689–1706.CrossRefGoogle Scholar
  28. IPCC. (2000). Special report on emissions scenarios. Cambridge: Cambridge University Press.Google Scholar
  29. Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G. J., Folberth, G., et al. (2003). Europe’s terrestrial biosphere absorbs 7 to 12 % of European anthropogenic CO2 emissions. Science, 300, 1538–1542.CrossRefGoogle Scholar
  30. Jian-Bing, W., Du-Ning, X., Xing-Yi, Z., Xiu-Zhen, L., & Xiao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the Black Soil region, Northeast China. Environmental Monitoring & Assessment, 121, 597–613.CrossRefGoogle Scholar
  31. Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y. Q., et al. (2009). Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 113, 1382–1396.CrossRefGoogle Scholar
  32. Kimura, F., Kitoh, A., Sumi, A., Asanuma, J., & Yatagai, A. (2007). Downscaling of the global warming projections to Turkey. The Final Report of ICCAP (Impact of Climate Changes on Agricultural Production System in Arid Areas), Research Institute for Humanity and Nature.Google Scholar
  33. Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology & Biochemistry, 27, 753–760.CrossRefGoogle Scholar
  34. Knapp, A. K., Burns, C. E., Fynn, R. W., Kirkman, K. P., Morris, C. D., & Smith, M. D. (2006). Convergence and contingency in production–precipitation relationships in North American and South African C4 grasslands. Oecologia, 149, 456–464.CrossRefGoogle Scholar
  35. Knorr, W., & Heimann, M. (1995). Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus, 47, 471–489.CrossRefGoogle Scholar
  36. Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., et al. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015.CrossRefGoogle Scholar
  37. Lieth, H., & Whittaker, R. (1975). Primary productivity of the biosphere. New York: Springer.CrossRefGoogle Scholar
  38. Lobell, D. B., Hicke, J. A., Asner, G. P., Field, C. B., Tucker, C. J., & Los, S. O. (2002). Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Global Change Biology, 8, 722–735.CrossRefGoogle Scholar
  39. Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichsteins, M., Papale, D., et al. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537.CrossRefGoogle Scholar
  40. Luyssaert, S., Ciais, P., Piao, S. L., Schulze, E.-D., Jung, M., Zaehle, S., et al. (2010). The European carbon balance. Part 3: forests. Global Change Biology, 16, 1429–1450.CrossRefGoogle Scholar
  41. Ma, S., Baldocchi, D. D., Xu, L., & Hehn, T. (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology, 147, 157–171.CrossRefGoogle Scholar
  42. Matala, J., Kellomäki, S., & Nuutinen, T. (2008). Litterfall in relation to volume growth of trees: analysis based on literature. Scandinavian Journal of Forest Research, 23, 194–202.CrossRefGoogle Scholar
  43. McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., et al. (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15, 183–206.CrossRefGoogle Scholar
  44. Miglietta, F., & Peressotti, A. (1999). Summer drought reduces carbon fluxes in Mediterranean forest. Global Change Newsletter, 39, 15–16.Google Scholar
  45. Nemani, R., Hashimoto, H., Votava, P., Melton, F., Wang, W., Michaelis, A., et al. (2009). Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS). Remote Sensing of Environment, 113, 1497–1509.CrossRefGoogle Scholar
  46. Nunes, L., Lopes, D., Castro, R. F., & Gower, S. T. (2013). Aboveground biomass and net primary production of pine, oak and mixed pine–oak forests on the Vila Real district, Portugal. Forest Ecology & Management, 305, 38–47.CrossRefGoogle Scholar
  47. Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: current methods of estimation. Environmental Monitoring & Assessment, 178, 135–160.CrossRefGoogle Scholar
  48. Parton, W. J., Scurlock, J. M. O., & Ojima, D. S. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7, 785–809.CrossRefGoogle Scholar
  49. Peichl, M., Sonnentag, O., Wohlfahrt, G., Flanagan, L. B., Baldocchi, D. D., Kiely, G., et al. (2013). Convergence of potential net ecosystem production among contrasting C3 grasslands. Ecology Letters, 16, 502–512.CrossRefGoogle Scholar
  50. Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., et al. (2007). Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—the effect of drought. Biogeosciences, 4, 1–12.CrossRefGoogle Scholar
  51. Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., et al. (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811–841.CrossRefGoogle Scholar
  52. Potter, C. S., Klooster, S., Myneni, R., Genovese, V., Tan, P. N., & Kumar, V. (2003). Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Global and Planetary Change, 39, 201–213.CrossRefGoogle Scholar
  53. Powell, H. L., Gholz, K. L., Clark, G., Starr, W. P., Cropper, J. R., & Martin, T. A. (2008). Carbon exchange of a mature, naturally regenerated pine forest in North Florida. Global Change Biology, 14, 2523–2538.Google Scholar
  54. Prince, S. D., & Goward, S. N. (1995). Global net primary production: a remote sensing approach. Journal of Biogeography, 22, 815–835.CrossRefGoogle Scholar
  55. Raich, J. W., & Nadelhoffer, K. J. (1989). Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70, 1346–1354.CrossRefGoogle Scholar
  56. Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, B44, 81–99.CrossRefGoogle Scholar
  57. Ruimy, A., Saugier, B., & Dedieu, G. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 99, 5263–5283.CrossRefGoogle Scholar
  58. Ruimy, A., Dedieu, G., & Saugier, B. (1996). TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 10, 269–286.CrossRefGoogle Scholar
  59. Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., & Hibbard, K. A. (1999). A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70, 108–127.CrossRefGoogle Scholar
  60. Running, S., Ramakrishna, R., Nemani, F., Heinsch, A., Maosheng, Z., Reeves, M., et al. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547–560.CrossRefGoogle Scholar
  61. Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169–172.CrossRefGoogle Scholar
  62. Schnell, S., Altrell, D., Stahl, G., & Kleinn, C. (2014). The contribution of trees outside forests to national tree biomass and carbon stocks—a comparative study across three continents. Environmental Monitoring & Assessment, 187, 4197.CrossRefGoogle Scholar
  63. Schowalter, T. D., Hargrove, W. W., & Crossley, D. A. (1986). Herbivory in forested ecosystems. Annual Review of Entomology, 31, 177–196.CrossRefGoogle Scholar
  64. Schulze, E. D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I. A., Thiruchittampalam, B., et al. (2010). The European carbon balance: part 4: integration of carbon and other trace-gas fluxes. Global Change Biology, 16, 1451–1469.CrossRefGoogle Scholar
  65. Sellers, P. J., Randall, D. A., & Collatz, G. J. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs: part I: model formulation. Journal of Climate, 9, 676–705.CrossRefGoogle Scholar
  66. Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.CrossRefGoogle Scholar
  67. Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C., et al. (2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment, 121, 121–134.CrossRefGoogle Scholar
  68. Suttie, J. M., Reynolds, S. G., & Batello, C. (2005). Grasslands of the world. FAO Plant Production and Protection Series, FAO.Google Scholar
  69. Wali, M. K., Evrendilek, F., West, T., Watts, S., Pant, D., Gibbs, H., et al. (1999). Assessing terrestrial ecosystem sustainability: usefulness of regional carbon and nitrogen models. Nature & Resources, 35, 20–33.Google Scholar
  70. Wang, W., & Fang, J. (2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20–28.CrossRefGoogle Scholar
  71. Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., et al. (2014). Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 20, 3229–3237.CrossRefGoogle Scholar
  72. Weiss, M., Baret, F., Pavageau, K., Béal, D., Berthelot, B., & Regner, P. (2006). Top of canopy land products (TOA_VEG). Contract ESA AO/1-4233/02/I-LG.Google Scholar
  73. White, A. M., Thornton, P. E., Running, S. W., & Nemani, R. R. (2000). Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interactions, 4, 85.CrossRefGoogle Scholar
  74. Woodward, F. I., Smith, T. M., & Emanuel, W. R. (1995). A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 9(471), 490.Google Scholar
  75. Zaehle, S., Sitch, S., Prentice, I. C., Liski, J., Cramer, W., Erhard, M., et al. (2006). The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecological Applications, 16, 1555–1574.CrossRefGoogle Scholar
  76. Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95, 164–176.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Division of Remote Sensing and GIS, Department of Landscape ArchitectureCukurova UniversityAdanaTurkey
  2. 2.Department of Environmental EngineeringAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations