Soil properties discriminating Araucaria forests with different disturbance levels

  • Simone Cristina Braga Bertini
  • Lucas Carvalho Basilio Azevedo
  • Mary E. Stromberger
  • Elke Jurandy Bran Nogueira Cardoso


Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2 oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.


Soil quality indicator Soil microbiology Forest disturbance Reforestation Discriminant analysis 



We thank Mrs Pedrina Demétrio Conceição, Alto Ribeira Tourist State Park and Campos do Jordão State Park administration for permitting access to the areas where research was conducted. We also thank Denise Mescolotti and Luis Fernando Baldesin for their help with laboratory work. We also thank two anonymous reviewers for their constructive comments.

Compliance with ethical standards


This study was funded by FAPESP - Projeto Biota (Project no 2001/05146-6).

Conflict of interest

S.C.B. Bertini has received research grants from CAPES and FAPESP (Project no 2007/06943-3).

The authors declare that they have no conflict of interest.


  1. Alef, K. (1995). Estimation of microbial activities. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 228–231). London: Academic.Google Scholar
  2. Anderson, T. H. (1994). Physiological analysis of microbial communities in soil: applications and limitations. In K. Ritz, J. Dighton, & K. E. Giller (Eds.), Beyond the biomass (pp. 67–76). Chichester: Wiley.Google Scholar
  3. Anderson, T. H., & Domsch, K. H. (1993). The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology & Biochemistry, 25, 393–395.CrossRefGoogle Scholar
  4. Ball, B. C., Bingham, I., Rees, R. M., Watson, C. A., & Litterick, A. (2005). The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science, 85(5), 557–577.CrossRefGoogle Scholar
  5. Beyer, L., Wachendorf, C., Balzer, F. M., & Balzer-Graf, U. R. (1992). The effect of soil texture and soil management on microbial biomass and soil enzyme activities in arable soils of Northwest Germany. Agribiological Research (Germany), 45, 276–283.Google Scholar
  6. Bittencourt, J. V. M. (2007). Araucaria Angustifolia—its geography and ecology. Geographical Paper 180. pp. 1–15. Accessed 16 June 2014.
  7. Boyle, S. A., Rich, J. J., Bottomley, P. J., Cromack, K., & Myrold, D. D. (2006). Reciprocal transfer effects on denitrifying community composition and activity at forest and meadow sites in the Cascade Mountains of Oregon. Soil Biology & Biochemistry, 38(5), 870–878.CrossRefGoogle Scholar
  8. Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.), Methods of soil analysis, part 3. Chemical methods (pp. 1085–1121). Madison: Soil Science Society of America.Google Scholar
  9. Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837–842.CrossRefGoogle Scholar
  10. Bubb, K. A., Xu, Z. H., Simpson, J. A., & Safigna, P. G. (1998). Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southeast Queensland, Australia. Forest Ecology and Management, 110, 343–352.CrossRefGoogle Scholar
  11. Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330(6001), 192–196.CrossRefGoogle Scholar
  12. Carvalho, F., Moreira, F. M. S., & Cardoso, E. J. B. N. (2012). Chemical and biochemical properties of Araucaria angustifolia (bert.) ktze. forest soils in the state of São Paulo. Revista Brasileira Ciência do Solo, 36, 1189–1201.CrossRefGoogle Scholar
  13. Casida, L. E., Jr., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376.CrossRefGoogle Scholar
  14. Cochran, W. G. (1950). Estimation of bacterial densities by means of the “Most Probable Number”. Biometrics, 6, 105–106.CrossRefGoogle Scholar
  15. Comerford, N. B., Franzluebbers, A. J., Stromberger, M. E., Morris, L., Markewitz, D., & Moore, R. (2013). Assessment and evaluation of soil ecosystem services. Soil Horizons, 54, 3.CrossRefGoogle Scholar
  16. Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. BioScience, 50(8), 667–680.CrossRefGoogle Scholar
  17. De Boer, W., & Kowalchuk, G. A. (2001). Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology & Biochemistry, 33(7), 853–866.CrossRefGoogle Scholar
  18. Doi, R., & Ranamukhaarachchi, S. L. (2009). Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle. Revista de Biología Tropical, 57, 223–234.Google Scholar
  19. Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (pp. 3–21). Madison: Soil Science Society of America. Special Publication No. 35.Google Scholar
  20. Farjon, A. (2006). Araucaria angustifolia. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. Accessed 16 June 2014.
  21. Fox, R. L., & Sidarle, P. G. E. (1978). Phosphate adsorptíon by soils of the tropics. In M. Drosdoff (Ed.), Diversity of soils in the tropics (pp. 97–119). Madison: American Society of Agronomy.Google Scholar
  22. Garcia, C., Hernandez, T., & Costa, F. (1994). Microbial activity in soils under Mediterranean environmental conditions. Soil Biology and Biochemistry, 26(9), 1185–1191.CrossRefGoogle Scholar
  23. Gee, G. W., & Or, D. (2002). Particle-size analysi. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis, part 4. Physical methods (pp. 255–293). Madison: Soil Science Society of America.Google Scholar
  24. Haripal, K., & Sahoo, S. (2013). Physicochemical and biochemical reclamation of soil through secondary succession. Open Journal of Soil Science, 3(05), 235.CrossRefGoogle Scholar
  25. Harter, R. D. (2002). Acid soils of the tropics. University of New Hampshire.[Web_Format].pdf. Accessed 16 June 2014.
  26. Hartmann, M., Howes, C. G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Nilsson, R. H., Hallam, S. J., & Mohn, W. W. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. The ISME Journal, 6(12), 2199–2218.CrossRefGoogle Scholar
  27. Houlton, B. Z., Sigman, D. M., & Hedin, L. O. (2006). Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proceedings of the National Academy of Sciences, 103(23), 8745–8750.CrossRefGoogle Scholar
  28. Joergensen, R. G. (1996). Quantification of the microbial biomass by determining ninhydrin-reactive N. Soil Biology & Biochemistry, 28, 301–306.CrossRefGoogle Scholar
  29. Joergensen, R. G., & Brookes, P. C. (1990). Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5M K2SO4 soil. Soil Biology and Biochemistry, 22, 1023–1027.CrossRefGoogle Scholar
  30. Kanter, D., Mauzerall, D. L., Ravishankara, A. R., Daniel, J. S., Portmann, R. W., Grabiel, P. M., Moomaw, W. R., & Galloway, J. N. (2013). A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proceedings of the National Academy of Sciences, 110(12), 4451–4457.CrossRefGoogle Scholar
  31. Klemedtsson, L., Svensson, B. H., & Rosswall, T. (1987). Dinitrogen and nitrous oxide produced by denitrification and nitrification in soil with and without barley plants. Plant and Soil, 99, 303–319.CrossRefGoogle Scholar
  32. Lammel, D. R., Brancalion, P. H. S., Dias, C. T. S., & Cardoso, E. J. B. N. (2007). Rhizobia and other legume nodule bacteria richness in Brazilian Araucaria angustifolia forest. Scientia Agricola, 64, 400–408.CrossRefGoogle Scholar
  33. Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO (1st ed.). New York: Cambridge University Press.Google Scholar
  34. Maag, M., & Vinther, F. P. (1996). Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 4(1), 5–14.CrossRefGoogle Scholar
  35. Menneer, J. C., Ledgard, S., McLay, C., & Silvester, W. (2005). Animal treading stimulates denitrification in soil under pasture. Soil Biology & Biochemistry, 37(9), 1625–1629.CrossRefGoogle Scholar
  36. Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670.CrossRefGoogle Scholar
  37. Nowack, B., & Stone, A. T. (2006). Competitive adsorption of phosphate and phosphonates onto goethite. Water Research, 40(11), 2201–2209.CrossRefGoogle Scholar
  38. Paavolainen, L., & Smolander, A. (1998). Nitrification and denitrification in soil from a clear-cut norway spruce (Picea abies) stand. Soil Biology & Biochemistry, 30(6), 775–781.CrossRefGoogle Scholar
  39. Paavolainen, L., Kitunen, V., & Smolander, A. (1998). Inhibition of nitrification in forest soil by monoterpenes. Plant and Soil, 205(2), 147–154.CrossRefGoogle Scholar
  40. Pancholy, S. K., & Rice, E. L. (1973). Soil enzymes in relation to old field succession: amylase, cellulase, invertase, dehydrogenase, and urease. Soil Science Society of America Journal, 37(1), 47–50.CrossRefGoogle Scholar
  41. Patra, A. K., Abbadie, L., Clays-Josserand, A., Degrange, V., Grayston, S. J., Loiseau, P., Louault, F., Mahmood, S., Nazaret, S., Philippot, L., Poly, F., Prosser, J. I., Richaume, A., & Le Roux, X. (2005). Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs, 75, 65–80.CrossRefGoogle Scholar
  42. Peralta, R. M., Ahn, C., Voytek, M. A., & Kirshtein, J. D. (2013). Bacterial community structure of nirK-bearing denitrifiers and the development of properties of soils in created mitigation wetlands. Applied Soil Ecology, 70, 70–77.CrossRefGoogle Scholar
  43. Qian, J. H., Doran, J. W., & Walters, D. T. (1997). Maize plant contributions to root zone available carbon an microbial transformations of nitrogen. Soil Biology & Biochemistry, 29, 1451–1562.CrossRefGoogle Scholar
  44. Quilchano, C., & Marañón, T. (2002). Dehydrogenase activity in Mediterranean forest soils. Biology and Fertility of Soils, 35(2), 102–107.CrossRefGoogle Scholar
  45. Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949), 123–125.CrossRefGoogle Scholar
  46. Robertson, G. P., Vitousek, P. M., Matson, P. A., & Tiedje, J. M. (1987). Denitrification in a clearcut Loblolly pine (Pinus taeda L.) plantation in the southeastern US. Plant and Soil, 97(1), 119–129.CrossRefGoogle Scholar
  47. Sarathchandra, S. V. (1978). Nitrification activities and the changes in the population of nitrifying bactéria in soil perfused with two different H-ion concentrations. Plant and Soil, 50, 99–111.CrossRefGoogle Scholar
  48. Sawyer, J. (1993). Plantations in the tropics: environmental concerns (Vol. 11). Gland: IUCN.Google Scholar
  49. Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences, 106(1), 203–208.CrossRefGoogle Scholar
  50. Schloter, M., Dilly, O., & Munch, J. C. (2003). Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98(1), 255–262.CrossRefGoogle Scholar
  51. Schmidt, E. L., & Belser, L. W. (1994). Autotrophic nitrifying bacteria. In R. W. Weaver (Ed.), Methods of soil analysis, Part 2. Microbiological and biochemical properties (pp. 159–177). Madison: Soil Science Society of America.Google Scholar
  52. Schoenholtz, S. H., Miegroet, H. V., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138(1), 335–356.CrossRefGoogle Scholar
  53. Shimizu, J. Y., & Oliveira, Y. M. M. (1981). Distribuição, variação e usos dos recursos genéticos da araucária no sul do Brasil. Curitiba: EMBRAPA, URPFCS 4.Google Scholar
  54. Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes (2nd ed.). Brasília: Embrapa Informação Tecnológica.Google Scholar
  55. Silva, A. N., Xavier, A., Sério, F. C., Oliveira, I. R. N., & Maldonado, W. (2009). Unidades de conservação da natureza. São Paulo: Secretaria do Meio Ambiente do Estado de São Paulo, Fundação Florestal.Google Scholar
  56. Skujinš, J. (1973). Dehydrogenase: an indicator of biological activities in arid soils. Bulletins of the Ecological Research Committee, 17, 235–241.Google Scholar
  57. Soil Survey Staff. (2010). Keys to soil taxonomy (11th ed.). Washington: USDA NRCS.Google Scholar
  58. Sparling, G. P., & West, A. W. (1988). Modifications to the fumigation-extraction technique to permit simultaneous extraction and estimation of soil microbial C and N. Communications in Soil Science and Plant Analysis, 19, 327–344.CrossRefGoogle Scholar
  59. Szukics, U., Abell, G. C., Hödl, V., Mitter, B., Sessitsch, A., Hackl, E., & Zechmeister‐Boltenstern, S. (2010). Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiology Ecology, 72(3), 395–406.CrossRefGoogle Scholar
  60. Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver, S. Angle, & P. S. Bottomley (Eds.), Methods of soil analysis. Part 2. Microbiological and biochemical properties (pp. 775–833). Madison: Soil Science Society of America.Google Scholar
  61. Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79(1), 10–22.CrossRefGoogle Scholar
  62. Tiedje, J. M. (1982). Denitrification. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis, part 2. Chemical and microbiological properties (pp. 1011–1026). Madison: American Society of Agronomy.Google Scholar
  63. Torbert, H. A., & Wood, C. W. (1992). Effects of soil compaction and water‐filled pore space on soil microbial activity and N losses. Communications in Soil Science and Plant Analysis, 23(11–12), 1321–1331.CrossRefGoogle Scholar
  64. van Raij, B., Quaggio, J. A., Cantarella, H., & Andrade, J. C. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico de Campinas.Google Scholar
  65. Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring microbial biomass C. Soil Biology & Biochemistry, 19, 703–707.CrossRefGoogle Scholar
  66. Wu, J., Joergensen, R., Pommerening, B., Chaussod, R., & Brookes, P. (1990). Measurement of soil microbial biomass C in soil by fumigation-extraction: an improved method. Soil Biology & Biochemistry, 22, 1167–1169.CrossRefGoogle Scholar
  67. Zheng, B., & Agresti, A. (2000). Summarizing the predictive power of a generalized linear model. Statistics in Medicine, 19(13), 1771–1781.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Simone Cristina Braga Bertini
    • 1
    • 4
  • Lucas Carvalho Basilio Azevedo
    • 2
  • Mary E. Stromberger
    • 3
  • Elke Jurandy Bran Nogueira Cardoso
    • 4
  1. 1.Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Instituto de Ciências AgráriasUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Department of Soil and Crop SciencesColorado State UniversityFort CollinsUSA
  4. 4.Departamento de Ciência do SoloEscola Superior de Agricultura “Luiz de Queiroz” – ESALQ/USPPiracicabaBrazil

Personalised recommendations