Metal concentrations in irrigation canals and the Nile River in an intensively exploited agricultural area

  • H. A. El-Mashali
  • H. M. Badran
  • T. Elnimr


Concentrations of major and trace elements (Al, Fe, Mn, B, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sr, V, and Zn) were determined in water and sediments from irrigation canals and the Nile River in an agricultural area of 120 km2 to evaluate the impact of agricultural practices and the spatial distribution and mobility of these elements. The enrichment factors of cadmium indicate contamination in this area. Metal pollution indices are higher at locations downstream of the irrigation canals, possibly a consequence of waste discharges and phosphate fertilizing. Comparisons with consensus-based sediment quality guidelines revealed that ∼92 % (Cr), ∼85 % (Cu), ∼46 % (Ni), and ∼23 % (Zn) of the samples exceeded the threshold effect concentrations, with 7.7 % for Cr and Ni being above the probable effect concentration. Contamination with many metals in water was found in the secondary irrigation canals. The partition coefficients of all determined metals were evaluated. The major elements Al, Fe, and Mn were found to be very mobile while V was the least mobile.


Water Sediment Nile river Major and trace elements 


  1. Allen, S. E. (1989). Chemical analysis of ecological materials (2nd ed.). Oxford: Blackwell Scientific Publication.Google Scholar
  2. Anbar, A. D., & Rouxel, O. (2007). Metal Stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences, 34, 717–746.CrossRefGoogle Scholar
  3. Chetelat, B., & Gaillardet, J. (2005). Boron isotopes in the seine river, France: a probe of anthropogenic contamination. Environmental Science & Technology, 39, 2486–2493.CrossRefGoogle Scholar
  4. Dai, J., Song, J., Li, X., Yuan, H., Li, N., & Zheng, G. (2007). “Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China”. Environmental Pollution, 145, 656–667.CrossRefGoogle Scholar
  5. DiToro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. E., Mays, S. M., & Redmont, M. S. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulphides. Environmental Toxicology and Chemistry, 9, 1487–1502.CrossRefGoogle Scholar
  6. Farkas, A., Erratico, C., & Vigan, L. (2007). “Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po”. Chemosphere, 68, 761–768.CrossRefGoogle Scholar
  7. Hakanson, L. (1980). “An ecological risk index for aquatic pollution control. A sedimentological approach”. Water Research, 14, 975–1001.CrossRefGoogle Scholar
  8. Harikumar, P. S., Nasir, U. P., & Mujeebu, M. P. (2009). “Distribution of heavy metals in the core sediments of a tropical wetland system”. International Journal of Environmental Science and Technology, 6, 225–232.CrossRefGoogle Scholar
  9. Kumar, G. P. (2008). “Growth of Jatrophacurcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter – a greenhouse study”. Bioresource Technolology, 99, 2078–2082.CrossRefGoogle Scholar
  10. Kumar, S. P., & Edward, J. K. P. (2009). “Assessment of metal concentration in the sediment core of Manakudy estuary of south west coast of India”. Indian Journal of Marine Sciences, 38, 235–48.Google Scholar
  11. Kwon, Y. T., & Lee, C. W. (1998). “Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area”. Science of the Total Environment, 214, 203–210.CrossRefGoogle Scholar
  12. Lambert, R., Grant, C., & Sauvé, S. (2007). “Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers”. Science of the Total Environment, 378, 293–305.CrossRefGoogle Scholar
  13. Lion, L. W., Altmann, R. S., & Leckie, J. O. (1982). Trace metal adsorption characteristics of estuarine particulate matter: evaluation of contributions of Fe/Mn oxide and organic surface coatings. Environmental Science and Technology, 16, 660–666.CrossRefGoogle Scholar
  14. Long, E. R., & MacDonald, D. D. (1998). “Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems”. Human and Ecological Risk Assessment, 5, 1019–1039.CrossRefGoogle Scholar
  15. Long, E. R., Ingersoll, C. G., & MacDonald, D. D. (2006). “Calculation and uses of mean sediment quality guideline quotients: a critical review”. Environmental Science & Technology, 40, 1726–36.CrossRefGoogle Scholar
  16. MacDonald, D. D., Carr, S., Clader, F. D., Long, E. D., & Ingersoll, C. G. (1996). “Development and evaluation of sediment quality guidelines for Florida coastal waters”. Ecotoxicology, 5, 253–78.CrossRefGoogle Scholar
  17. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). “Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems”. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  18. Malcolm, S. J. (1985). Early diagenesis of molybdenum in estuarine sediments. Marine Chemistry, 16, 213–225.CrossRefGoogle Scholar
  19. Marschall, H. R., & Jiang, S. Y. (2011). “Tourmaline isotopes: no element left behind”. Elements, 7, 313–319.CrossRefGoogle Scholar
  20. Martin, J. M., & Meybeck, M. (1979). “Elemental mass-balance of material carried by major world rivers”. Marine Chemistry, 7, 173–206.CrossRefGoogle Scholar
  21. NRC. (2004). “Canadian Minerals Yearbook: Molybdenum. National Resources Canada” Available online:
  22. Pennisi, M., Gonfiantini, R., Grassi, S., & Squarci, P. (2006). The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Applied Geochemistry, 21, 643–655.CrossRefGoogle Scholar
  23. Petelet-Giraud, E., Klaver, G., & Negrel, P. J. (2009). Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel River (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomality. Journal of Hydrology, 369, 336–349.CrossRefGoogle Scholar
  24. Rowell, D. L. (1994). Soil science: methods and applications. England: Longman Scientific and Technical.Google Scholar
  25. Sinex, S. A., & Wright, D. A. (1988). “Distribution of trace metals in the sediments and biota of chesapeake Bay”. Marine Pollution Bulletin, 19, 425–431.CrossRefGoogle Scholar
  26. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). “Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index”. Helgol Meeresunters, 33, 566–575.CrossRefGoogle Scholar
  27. Turekian, K. K., & Wedepohl, K. H. (1961). “Distribution of the elements in some major units of the Earth’s crust”. Geological Society of America Bulletin, 72, 175–192.CrossRefGoogle Scholar
  28. USEPA. (1996). “Acid Digestion of Sludges, Solids and Soils, USEPA 3050B” In SW-846 Pt 1. Office of Solid and Hazardous Wastes. Cincinnati: USEPA.Google Scholar
  29. Usero, J., Gonzales-Regalado, E., & Gracia, I. (1996). “Trace metals in bivalve mollusks Chamelea gallina from the Atlantic Coast of southern Spain”. Marine Pollution Bulletin, 32, 305–10.CrossRefGoogle Scholar
  30. Zheng, N., Wang, Q., Liang, Z., & Zheng, D. (2008). “Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China”. Environmental Pollution, 154, 135–142.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Physics Department, College in Leith–GirlsUmm Al-Qura UniversityLeithSaudi Arabia
  3. 3.Physics Department, Faculty of ScienceTaif UniversityAl-HaweiahSaudi Arabia

Personalised recommendations