Estimation of toxic elements in the samples of different cigarettes and their effect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers

  • Hassan Imran Afridi
  • Farah Naz Talpur
  • Tasneem Gul Kazi
  • Dermot Brabazon


Cigarette smoking interferes with the metal homeostasis of the human body, which plays a crucial role for maintaining the health. A significant flux of heavy metals, among other toxins, reaches the lungs through smoking. In the present study, the relationship between toxic element (TE) exposure via cigarette smoking and rheumatoid arthritis incidence in population living in Dublin, Ireland, is investigated. The trace {zinc (Zn), copper (Cu), manganese (Mn), and selenium (Se)} and toxic elements arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) were determined in biological (scalp hair and blood) samples of patients diagnosed with rheumatoid arthritis, who are smokers living in Dublin, Ireland. These results were compared with age- and sex-matched healthy, nonsmoker controls. The different brands of cigarette (filler tobacco, filter, and ash) consumed by the studied population were also analyzed for As, Cd, Hg, and Pb. The concentrations of trace and TEs in biological samples and different components of cigarette were measured by inductively coupled plasma mass spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked using certified reference materials. The recovery of all the studied elements was found to be in the range of 96.4–99.8 % in certified reference materials. The filler tobacco of different branded cigarettes contains Hg, As, Cd, and Pb concentrations in the ranges of 9.55–12.4 ng, 0.432–0.727 μg, 1.70–2.12 μg, and 0.378–1.16 μg/cigarette, respectively. The results of this study showed that the mean values of As, Cd, Hg, and Pb were significantly higher in scalp hair and blood samples of rheumatoid arthritis patients as compare to healthy controls, while Zn, Cu, Mn, and Se concentrations were found to be lower in rheumatoid arthritis patients, the difference was significant in the case of smoker patients (p < 0.001). The levels of four toxic elements were 2–3-folds higher in scalp hair and blood samples of nonrheumatoid arthritis smoker subjects as compared to nonsmoker controls. The high exposure of toxic metals as a result of cigarette smoking may be synergistic with risk factors associated with rheumatoid arthritis.


Biological samples Different brands of cigarette Cigarette smokers Toxic elements Inductively coupled plasma mass spectrophotometer 



Dr. Hassan Imran Afridi thanks School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland, for providing the financial assistance to carry out this work.

Conflict of interest

The authors declare no conflict of interest.


  1. Aaseth, J., Munthe, E., Forre, O., & Steinnes, E. (1978). Trace elements in serum and urine of patients with rheumatoid arthritis. Scandinavian Journal of Rheumatology, 7, 237–240.CrossRefGoogle Scholar
  2. Adnan, M., Massadeh, F. Q., Alali, Q., & Jaradat, M. (2005). Determination of cadmium and lead in different cigarette brands in Jordan. Journal of Environmental Monitoring, 104, 163–170.CrossRefGoogle Scholar
  3. Afridi, H. I., Kazi, T. G., Kazi, G. H., Jamali, M. K., & Shar, G. Q. (2006). Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectroscopy Letters, 39, 203–214.CrossRefGoogle Scholar
  4. Afridi, H. I., Kazi, T. G., Kazi, N., Jamali, M. K., Arain, M. B., Jalbani, N., et al. (2008). Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Research and Clinical Practice, 80, 280–288.CrossRefGoogle Scholar
  5. Ala, S., Shokrzadeh, M., Pur Shoja, A. M., & Saeedi Saravi, S. S. (2009). Zinc and copper plasma concentrations in rheumatoid arthritis patients from a selected population in Iran. Pakistan Journal of Biological Sciences, 12, 1041–1044.CrossRefGoogle Scholar
  6. Alegre, C., Baro, J., & Obach, J. (1984). Zinc and rheumatic disease. Arthritis and Rheumatology, 27, 073–1074.CrossRefGoogle Scholar
  7. Angus, R. M., Sambrook, P. N., Pocock, N. A., & Eisman, J. A. (1988). Dietary intake and bone mineral density. Bone and Mineral, 4, 265–277.Google Scholar
  8. Apps, D. K., Cohen, B. B., & Steel, C. M. (1992). Biochemistry: a concise text for medical students (5th ed.). London: Bailliere Tindall.Google Scholar
  9. ATSDR. (2001). Guidance manual for the assessment of joint toxic action of chemical mixtures. Atlanta: Agency for Toxic Substances and Disease Registry.Google Scholar
  10. Aufderheide, A. C. (1989). Chemical analysis of skeletal remains. In M. Y. Iscan & K. A. R. Kennedy (Eds.), Reconstruction of life from the skeleton (pp. 237–260). New York: Alan R. Liss.Google Scholar
  11. Brzoska, M. M., Moniuszko-Jakoniuk, J., Jurczuk, M., & Chraniuk, M. (1997). The influence of cadmium on bone tissue in rats. Polish Journal of Environmental Studies, 6, 29–32.Google Scholar
  12. Cashman, K., & Flynn, A. (1998). Trace elements and bone metabolism. In B. Sandstrom & P. Walter (Eds.), Role of trace elements for health promotion and disease prevention, Bibl Nutr Dieta, vol 54 (pp. 150–154). Basel: Karger publication.Google Scholar
  13. Cerhan, J. R., Saag, K. G., Merlino, L. A., Mikuls, T. R., & Criswell, L. A. (2003). Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women. American Journal of Epidemiology, 157, 345–354.CrossRefGoogle Scholar
  14. Conlan, D., Korula, R., & Tallentire, D. (1990). Serum copper levels in elderly patients with femoral-neck fractures. Age and Ageing, 19(3), 212–214.CrossRefGoogle Scholar
  15. Csalari, J., & Szantai, K. (2002). Transfer rate of cadmium, lead, zinc and iron from the tobacco cut of the most popular Hungarian cigarette brands to the combustion products. Acta Alimentaria, 31, 279–288.CrossRefGoogle Scholar
  16. Chiba, M., & Masironi, R. (1992). Toxic and trace elements in tobacco and tobacco smoke. Bulletin of the World Health Organization, 70, 269–275.Google Scholar
  17. Divrikli, U., Horzum, N., Soylak, M., & Elci, L. (2006). Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. International Journal of Food Science and Technology, 41(6), 712–716.CrossRefGoogle Scholar
  18. Dollwet, H. H. A., & Sorenson, J. F. J. (1988). Roles of copper in bone maintenance and healing. Biological Trace Element Research, 18, 39–48.CrossRefGoogle Scholar
  19. Ebisike, K., Ayejuyo, O. O., Sonibare, J. A., & Ojumu, T. V. (2004). Pollution impacts of cigarette consumption on indoor air quality in Nigeria. Journal of Applied Sciences, 4, 623–629.CrossRefGoogle Scholar
  20. Eaton-Evans, J., McIlwrath, E. M., Jackson, W. E., McCartney, H., & Strain, J. J. (1996). Copper supplementation and the maintenance of bone mineral density in middle-aged women. Journal of Trace Elements in Experimental Medicine, 9, 87–94.CrossRefGoogle Scholar
  21. EU Observer (2008). MEP calls for EU ban on cigarettes by 2025.Google Scholar
  22. Evans, P., & Halliwell, B. (2001). Micronutrients: oxidant/antioxidant status. British Journal of Nutrition, 85, S67–S74.CrossRefGoogle Scholar
  23. Fautrel, B., & Bourgeois, P. (2000). Affections rheumatismales: generalites. Drugs, 59, 1–9.CrossRefGoogle Scholar
  24. Forestier, J. (1949). Copper and gold salts in rheumatoid arthritis. Annals of the Rheumatic Diseases, 8, 132–134.CrossRefGoogle Scholar
  25. Fowles, J., & Dybing, B. (2003). Application of toxicological risk assessment principles to the chemical constituents of tobacco smoke. Tobacco Control, 12, 424–430.CrossRefGoogle Scholar
  26. Gambhir, J. K., & Lali, P. (1999). Blood selenium levels in healthy Indian subjects and patients with rheumatoid arthritis. Clinical Biochemistry, 32, 665–666.CrossRefGoogle Scholar
  27. Goyer, R. A. (1996). Toxic effects of metals. In C. D. Klaassen (Ed.), Casarett and Doull’s toxicology: the basic science of poisons (5th ed., pp. 691–736). New York: McGraw-Hill.Google Scholar
  28. Grynpas, M. D. (1990). Fluoride effects on bone crystals. Journal of Bone and Mineral Research, 5, S169–S175.CrossRefGoogle Scholar
  29. Heath, D. A., & Shaw, N. J. (2001). Calcium and bone metabolism. In C. Brook & P. Hindmarsh (Eds.), Clinical pediatric endocrinology (4th ed., pp. 377–389). Oxford: Blackwell Science.Google Scholar
  30. Hecht, S. S. (2003). Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature Reviews Cancer, 3, 733–744.CrossRefGoogle Scholar
  31. Helgeland, M., Svendsen, E., Førre, O., & Haugen, M. (2000). Dietary intake and serum concentrations of antioxidants in children with juvenile arthritis. Clinical and Experimental Rheumatology, 18, 637–641.Google Scholar
  32. Honkanen, V. E. A., Lamberg-Allardt, C. H., Vesterinen, M. K., et al. (1991). Plasma zinc and copper concentrations in rheumatoid arthritis: influence of dietary factors and disease activity. American Journal of Clinical Nutrition, 54, 1082–1086.Google Scholar
  33. Husgavfel-Pursiainen, K. (2004). Genotoxicity of environmental tobacco smoke: a review. Mutation Research, 567, 427–445.CrossRefGoogle Scholar
  34. Jonas, J., Burns, J., Abel, E. W., et al. (1993). Impaired mechanical strength of bone in experimental copper deficiency. Annals of Nutrition and Metabolism, 37, 245–252.CrossRefGoogle Scholar
  35. Jorde, R., Sneve, M., Torjesen, P. A., et al. (2010). No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year. Journal of Nutrition, 9, 1–9.CrossRefGoogle Scholar
  36. Jung, M. C., Thornton, I., & Chon, H. T. (1998). Arsenic, cadmium, copper, lead, and zinc concentrations in cigarettes produced in Korea and the United Kingdom. Environmental Technology, 19, 237–241.CrossRefGoogle Scholar
  37. Kazi, T. G., Jalbani, N., Kazi, N., Jamali, M. K., Arain, M. B., Afridi, H. I., et al. (2008a). Evaluation of toxic metals in blood and urine samples of chronic renal failure patients, before and after dialysis. Renal Failure, 30, 737–745.CrossRefGoogle Scholar
  38. Kazi, T. G., Memon, A. R., Afridi, H. I., Jamali, M. K., Arain, M. B., Jalbani, N., et al. (2008b). Determination of cadmium in whole blood and scalp hair samples of Pakistani male lung cancer patients by electro thermal atomic absorption spectrometer. Science of theTotal Environment, 389, 270–276.CrossRefGoogle Scholar
  39. Kazi, T. G., Jalbani, N., Arain, M. B., Jamali, M. K., Afridi, H. I., Sarfraz, R. A., et al. (2009). Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer. Journal of Hazardous Materials, 163, 302–307.CrossRefGoogle Scholar
  40. Köse, K., Dogan, P., Kardas, Y., & Saraymen, R. (1996). Plasma selenium levels in rheumatoid arthritis. Biological Trace Element Research, 53, 51–56.CrossRefGoogle Scholar
  41. Kuo, S. (1999). In vivo architecture of the manganese superoxide dismutase promoter. Journal of Biological Chemistry, 274(6), 3345–3354.CrossRefGoogle Scholar
  42. Lonnerdal, B. (1993). Dietary factors influencing zinc absorption. Journal of Nutrition, 130, 1378–1383.Google Scholar
  43. Lugon-Moulin, N., Martin, F., Krauss, M. R., Ramey, P. B., & Rossi, L. (2006). Cadmium concentration in tobacco (Nicotiana tabacum L.) from different countries and its relationship with other elements. Chemosphere, 63, 1074–1086.CrossRefGoogle Scholar
  44. Mastousek, A. J., Burguera, J. L., Burguera, M., & Anez, N. (1993). Change in total content of iron, copper and zinc in serum, heart, liver, spleen and skeletal muscle tissues of rats infected with Trypanosoma Cruzi. Biological Trace Element Research, 37, 51–69.CrossRefGoogle Scholar
  45. Mierzecki, A., Strecker, D., & Radomska, K. (2011). A pilot study on zinc levels in patients with rheumatoid arthritis. Biological Trace Element Research, 143(2), 854–862.CrossRefGoogle Scholar
  46. Milanino, R., Frigo, A., Bambara, L. M., Marrella, M., Moretti, U., & Pasqualicchio, M. (1993). Copper and zinc status in rheumatoid arthritis: studies of plasma, erythrocytes and urine, and their relationship with disease activity markers and pharmacological treatment. Clinical and Experimental Rheumatology, 11, 271–281.Google Scholar
  47. Mulchi, C. L., Adamu, C. A., Bell, P. F., & Chaney, R. L. (1992). Residual heavy metal levels in sludge amended coastal plain soils. II. Predictingmetal levels in tobacco from soil test information. Communications in Soil Science and Plant Analysis, 23, 1053–1069.CrossRefGoogle Scholar
  48. Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2000). Harper’s biochemistry (25th ed.). New York: Lange.Google Scholar
  49. Naveh, Y., Schapira, D., Ravel, Y., Geller, E., & Scharf, Y. (1997). Zinc metabolism in rheumatoid arthritis: plasma and urinary zinc and relationship to disease activity. Journal of Rheumatology, 24, 643–646.Google Scholar
  50. Nawrot, T. S., Thijs, L., Den Hond, E. M., Roels, H. A., & Staessen, J. A. (2002). An epidemiological reappraisal of the association between blood pressure and blood lead: a metaanalysis. Journal of Human Hypertension, 16, 123–131.CrossRefGoogle Scholar
  51. Oakberg, K., Levy, T., & Smith, P. (2000). A method for skeletal arsenic analysis, applied to the Chalcolithic copper smelting site of Shiqmim, Israel. Journal of Archaeological Science, 27, 895–901.CrossRefGoogle Scholar
  52. O’Dell, J. R., Lemley-Gillespie, S., Palmer, W. R., Weaver, A. L., Moore, G. F., & Klassen, L. W. (1991). Serum selenium concentrations in rheumatoid arthritis. Annals of the Rheumatic Diseases, 50, 376–378.CrossRefGoogle Scholar
  53. European Commission (2011). Overview of smoke-free legislation in the EU. p. 8. Retrieved 27 Aug 2013.Google Scholar
  54. Peretz, A., Neve, J., Vertongen, F., Famaey, J. P., & Molle, L. (1987). Selenium status in relation to clinical variables and corticosteroid treatment in rheumatoid arthritis. Journal of Rheumatology, 14, 1104–1147.Google Scholar
  55. Piotrowska-Jastrzębska, J., Mikołuć, B., & Motkowski, R. (2002). Nutritional antioxidants in health and disease [Rola antyoksydantów żywieniowych w stanie zdrowia i choroby]. Terapia, 10, 43–49.Google Scholar
  56. Irish Times (2013). Plain cigarette packets to be introduced. Retrieved 28 Aug 2013.Google Scholar
  57. Reilly, C. (2002). Metal contamination of food: its significance for food quality and human health. Oxford: Blackwell Science Ltd.CrossRefGoogle Scholar
  58. Relea, P., Revilla, M., Ripoll, E., et al. (1995). Zinc, biochemical markers of nutrition, and type I osteoporosis. Age and Ageing, 24, 303–307.CrossRefGoogle Scholar
  59. Roche, S. (2013). New graphic photos on Irish tobacco products from today. Newstalk. Retrieved 28 Aug 2013.Google Scholar
  60. Rosen, B. P. (1995). Resistant mechanisms to arsenicals and antimonials. Journal of Basic and Clinical Physiology, 6, 251–264.Google Scholar
  61. Sandstead, H. H., Penland, J. G., Alcock, N. W., Dayal, H. H., Chen, X. C., Li, J. S., Zhao, F., & Yang, J. J. (1998). Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. American Journal of Clinical Nutrition, 68, 470S–475S.Google Scholar
  62. Sarban, S., Kocyigit, A., Yazar, M., & Isikan, U. E. (2005). Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clinical Biochemistry, 38, 981–986.CrossRefGoogle Scholar
  63. Sarban, S., Isikan, U. E., Kocabey, Y., & Kocyigit, A. (2007). Relationship between synovial fluid and plasma manganese, arginase, and nitric oxide in patients with rheumatoid arthritis. Biological Trace Element Research, 115, 97–106.CrossRefGoogle Scholar
  64. Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspectives, 112, 1099–1103.CrossRefGoogle Scholar
  65. Savory, J., Exley, C., Forbes, W. F., Huang, Y., Joshi, J. G., Kruck, T., et al. (1996). Can the controversy of the role of aluminum in Alzheimer’s disease be resolved? What are the suggested approaches to this controversy and methodological issues to be considered. Journal of Environmental Science and Health, Part A, 48, 615–635.Google Scholar
  66. Sharma, G., Sandhir, R., Nath, R., & Gill, K. (1991). Effect of ethanol on cadmium uptake and metabolism of zinc and copper in rats exposed to cadmium. Journal of Nutrition, 121, 87–91.Google Scholar
  67. Sauer, G. R., & Wuthier, R. E. (1990). Distribution of zinc in the avian growth plate. Journal of Bone and Mineral Research, 5, S162.Google Scholar
  68. Silverio Amancio, O. M., Alves Chaud, D. M., Yanaguibashi, G., & Esteves Hilario, M. O. (2003). Copper and zinc intake and serum levels in patients with juvenile rheumatoid arthritis. European Journal of Clinical Nutrition, 57, 706–712.CrossRefGoogle Scholar
  69. Skinner, H. C. W. (2000). In praise of phosphates, or why vertebrates chose apatite to mineralise their skeletal elements. International Geology, 42, 232–240.CrossRefGoogle Scholar
  70. Soylak, M., & Kirnap, M. (2001). Serum copper and zinc concentrations of patients with rheumatoid arthritis from Kayseri-Turkey. Fresenius Environmental Bulletin, 10, 409–410.Google Scholar
  71. Soylak, M., Saracoglu, S., Divrikli, U., & Elci, L. (2001). Copper and zinc concentrations of serum samples of healthy people living in Tokat, Turkey. Trace Elements and Electrolytes, 18(1), 47–50.Google Scholar
  72. Soylak, M., Tuzen, M., Souza, A. S., Korn, M. G. A., & Ferreira, S. L. C. (2007). Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry. Journal of Hazardous Materials, 149(2), 264–268.CrossRefGoogle Scholar
  73. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 18, 321–336.CrossRefGoogle Scholar
  74. Svenson, K. L., Hallgren, R., Johansson, E., & Lindh, U. (1985). Reduced zinc in peripheral blood cells from patients with inflammatory connective tissue diseases. Inflammation, 9(2), 189–199.CrossRefGoogle Scholar
  75. Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57, 399–411.CrossRefGoogle Scholar
  76. Tandon, S. K., Chatterjee, M., Bhargava, A., Shukla, V., & Bihari, V. (2001). Lead poisoning in Indian silver refiners. Science of the Total Environment, 281, 177–182.CrossRefGoogle Scholar
  77. Tarp, U. (1990). Selenium glutathione peroxidase in rheumatoid arthritis. British Journal of Rheumatology, 29, 158.CrossRefGoogle Scholar
  78. Tarp, U. (1995). Selenium in rheumatoid arthritis. Analyst, 120, 877–881.CrossRefGoogle Scholar
  79. Tuzen, M., & Soylak, M. (2007). Determination of trace metals in canned fish marketed in Turkey. Food Chemistry, 101(4), 1378–1382.CrossRefGoogle Scholar
  80. Waalkes, M. P., Coogan, T. P., & Barter, R. A. (1992). Toxicological principles of metal carcinogenesis with special emphasis on cadmium. Critical Reviews in Toxicology, 22, 175–201.CrossRefGoogle Scholar
  81. Yamaguchi, M. (1990). β-alanyl- -histidinato zinc and bone resorption. General Pharmacology: The Vascular System, 26, 1179–1183.CrossRefGoogle Scholar
  82. Yazar, M., Sarban, S., Kocyigit, A., & Isikan, U. E. (2005). Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biological Trace Element Research, 106, 123–132.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hassan Imran Afridi
    • 1
    • 2
  • Farah Naz Talpur
    • 1
    • 2
  • Tasneem Gul Kazi
    • 1
  • Dermot Brabazon
    • 2
  1. 1.National Center of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan
  2. 2.Mechanical and Manufacturing EngineeringDublin City UniversityDublinIreland

Personalised recommendations