Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode

  • Sayed Zia Mohammadi
  • Hadi Beitollahi
  • Elina Bani Asadi


In the present paper, the use of a carbon paste electrode modified by 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)-acrylic acid (3,4′AA) and ZrO2 nanoparticles prepared by a simple and rapid method was described. The heterogeneous electron transfer properties of (3,4′AA) coupled to ZrO2 nanoparticles at the carbon paste electrode were investigated using cyclic voltammetry, chronoamperometry, and square wave voltammetry in aqueous buffer solutions. Under the optimized conditions, the square wave voltammetric peak currents of hydrazine increased linearly with hydrazine concentrations in the range of 2.5 × 10−8 to 5.0 × 10−5 M, and detection limit of 14 nM was obtained for hydrazine. Finally, this modified electrode was used for the determination of hydrazine in water samples, using standard addition method.


Hydrazine ZrO2 nanoparticles Chemically modified electrodes Carbon paste electrode 



The authors wish to thank Payame Noor University for support of this work.


  1. Adekunle, A. S., & Ozoemena, K. I. (2008). Insights into the electro-oxidation of hydrazine at single-walled carbon-nanotube-modified edge-plane pyrolytic graphite electrodes electro-decorated with metal and metal oxide films. Journal of Solid State Electrochemistry, 12(10), 1325–1336.CrossRefGoogle Scholar
  2. Afkhami, A., & Zarei, A. R. (2004). Simultaneous spectrophotometric determination of hydrazine and phenylhydrazine based on their condensation reactions with different aromatic aldehydes in micellar media using Hpoint standard addition method. Talanta, 62(3), 559–565.CrossRefGoogle Scholar
  3. Amlathe, S., & Gupta, V. K. (1988). Spectrophotometric determination of trace amounts of hydrazine in polluted water. Analyst, 113(9), 1481–1483.CrossRefGoogle Scholar
  4. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods fundamentals and applications (2nd ed.). New York: Wiley.Google Scholar
  5. Beitollahi, H., & Ghorbani, F. (2013). Benzoylferrocene-modified carbon nanotubes paste electrode as a voltammetric sensor for determination of hydrochlorothiazide in pharmaceutical and biological samples. Ionics, 19(11), 1673–1679.CrossRefGoogle Scholar
  6. Beitollahi, H., & Mostafavi, M. (2014). Nanostructured base electrochemical sensor for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products and biological samples. Electroanalysis, 26(5), 1090–1098.CrossRefGoogle Scholar
  7. Beitollahi, H., & Sheikhshoaie, I. (2011). Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochimica Acta, 56(27), 10259–10263.CrossRefGoogle Scholar
  8. Beitollahi, H., Karimi-Maleh, H., & Khabazzadeh, H. (2008). Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydroquinazolinyl)- N′-phenyl-hydrazinecarbothioamide. Analytical Chemistry, 80(24), 9848–9851.CrossRefGoogle Scholar
  9. Beitollahi, H., Raoof, J. B., & Hosseinzadeh, R. (2011). Application of a carbon-paste electrode modified with 2,7- bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid. Electroanalysis, 23(8), 1934–1940.CrossRefGoogle Scholar
  10. Beitollahi, H., Tajik, S., Karimi Maleh, H., & Hosseinzadeh, R. (2013). Application of a 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode for voltammetric determination of hydrazine in water samples. Applied Organometalic Chemistry, 27(8), 444–450.CrossRefGoogle Scholar
  11. Brahman, P. K., Dar, R. A., Tiwari, S., & Pitre, K. S. (2012). Voltammetric determination of anticancer drug flutamide in surfactant media at polymer film modified carbon paste electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 8–15.CrossRefGoogle Scholar
  12. Budkuley, J. S. (1992). Determination of hydrazine and sulphite in the presence of one another. Microchimica Acta, 108(1–2), 103–105.CrossRefGoogle Scholar
  13. Chitravathi, S., Kumara Swamy, B. E., Mamatha, G. P., & Sherigara, B. S. (2012). Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid. Journal of Electroanalytical Chemistry, 667, 66–75.CrossRefGoogle Scholar
  14. Devnani, H., & Satsangee, S. P. (2013). Voltammetric trace determination of mercury using plant refuse modified carbon paste electrodes. Environmental Monitoring and Assessment, 185(11), 9333–9342.CrossRefGoogle Scholar
  15. Ensafi, A. A., & Rezaei, B. (1998). Flow injection determination of hydrazine with fluorimetric detection. Talanta, 47(3), 645–649.CrossRefGoogle Scholar
  16. Esfandiari Baghbamidi, S., Beitollahi, H., Mohammadi, S. Z., Tajik, S., Soltani-Nejad, S., & Soltani-Nejad, V. (2013). Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid. Chinese Journal of Catalysis, 34(10), 1869–1875.CrossRefGoogle Scholar
  17. Evgen’yev, M. I., Garmonov, S. Y., Evgen’yeva, I. I., & Budnikov, H. C. (1995). Determination of hydrazine derivatives by flow-injection analysis with spectrophotometric detection. Talanta, 42(10), 1465–1469.CrossRefGoogle Scholar
  18. Fonseca, J., Dohrn, R., & Peper, S. (2011). High-pressure fluid phase equilibria: experimental methods and systems investigated. Critical Reviews in Analytical Chemistry, 41, 282–313.CrossRefGoogle Scholar
  19. Galus, Z. (1976). Fundamentals of electrochemical analysis. New York: Ellis Horwood.Google Scholar
  20. Geraldo, D. A., Togo, C. A., Limson, J., & Nyokong, T. (2008). Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochimica Acta, 53(27), 8051–8057.CrossRefGoogle Scholar
  21. Ghaedi, M., Naderi, S., Montazerozohori, M., Sahraei, R., Daneshfar, A., & Taghavimoghadam, N. (2012). Modified carbon paste electrodes for Cu(II) determination. Materials Science and Engineering C, 32(8), 2274–2279.CrossRefGoogle Scholar
  22. Gojon, C., Dureault, B., Hovnanian, N., & Guizard, C. (1999). Optical chemical hydrazine sensor from hybrid organic-inorganic materials. Journal of Sol-Gel Science and Technology, 14(2), 163–173.CrossRefGoogle Scholar
  23. Goyal, R. N., Gupta, V. K., & Bachheti, N. (2007). Fullerene-C60- modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping. Analytica Chimica Acta, 597, 82–89.CrossRefGoogle Scholar
  24. Goyal, R. N., Gupta, V. K., Bachheti, N., & Sharma, R. N. (2008). Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis, 20, 757–764.CrossRefGoogle Scholar
  25. Guo, S. X., & Khoo, S. B. (1997). Formation of a mercury plated carbon paste electrode by electroreduction of a mercury(II) diethyldithiocarbamate modified carbon paste. Environmental Monitoring and Assessment, 44(1–3), 471–480.CrossRefGoogle Scholar
  26. Gupta, V. K., Mangla, R., Khurana, U., & Kumar, P. (1999). Determination of uranyl ions using poly (vinyl chloride) based 4-tert-butylcalix [6] arene membrane sensor. Electroanalysis, 11, 573–576.CrossRefGoogle Scholar
  27. Gupta, V. K., Prasad, R., Kumar, P., & Mangla, R. (2000). New nickel(II) selective potentiometric sensor based on 5,7,12,14- tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix. Analytica Chimica Acta, 420, 19–27.CrossRefGoogle Scholar
  28. Gupta, V. K., Chandra, S., & Mangla, R. (2002). Dicyclohexano- 18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochimica Acta, 47, 1579–1586.CrossRefGoogle Scholar
  29. Gupta, V. K., Jain, S., & Chandra, S. (2003). Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix. Analytica Chimica Acta, 486, 199–207.CrossRefGoogle Scholar
  30. Gupta, V. K., Chandra, S., & Lang, H. (2005). A highly selective mercury electrode based on a diamine donor ligand. Talanta, 66, 575–580.CrossRefGoogle Scholar
  31. Gupta, V. K., Jain, A. K., Kumar, P., Agarwal, S., & Maheshwari, G. (2006a). Chromium(III)-selective sensor based on tri-othymotide in PVC matrix. Sensors and Actuators B: Chemical, 113, 182–186.CrossRefGoogle Scholar
  32. Gupta, V. K., Jain, A. K., Maheshwari, G., Lang, H., & Ishtaiwi, Z. (2006b). Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B: Chemical, 117, 99–106.CrossRefGoogle Scholar
  33. Gupta, V. K., Jain, A. K., & Kumar, P. (2006c). PVC-based membranes of N, N’-dibenzyl-1,4,10,13-tetraoxa-7,16- diazacyclooctadecane as Pb(II)-selective sensor. Sensors and Actuators B: Chemical, 120, 259–265.CrossRefGoogle Scholar
  34. Gupta, V. K., Singh, A. K., Mehtab, S., & Gupta, B. (2006d). A cobalt(II)-selective PVC membrane based on a Schiff base complex of N, N’-bis(salicylidene)-3,4-diaminotoluene. Analytica Chimica Acta, 566, 5–10.CrossRefGoogle Scholar
  35. Gupta, V. K., Singh, A. K., Khayat, M. A. I., & Gupta, B. (2007). Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Analytica Chimica Acta, 590, 81–90.CrossRefGoogle Scholar
  36. Gupta, V. K., Jain, R., Radhapyari, K., Jadon, N., & Agarwal, S. (2011a). Voltammetric techniques for the assay of pharmaceuticals—a review. Analytical Biochemistry, 408, 179–196.CrossRefGoogle Scholar
  37. Gupta, V. K., Nayak, A., Agarwal, S., & Singhal, B. (2011b). Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Combinatorial Chemistry & High Throughput Screening, 14(4), 284–302.CrossRefGoogle Scholar
  38. Gupta, V. K., Singh, L. P., Singh, R., Upadhyay, N., Kaur, S. R., & Sethi, B. (2012). A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. Journal of Molecular Liquids, 174, 11–16.CrossRefGoogle Scholar
  39. Gupta, V. K., Sethi, B., Sharma, R. A., Agarwa, S., & Bharti, A. (2013). Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. Journal of Molecular Liquids, 177, 114–118.CrossRefGoogle Scholar
  40. Hočevar, S. B., & Ogorevc, B. (2007). Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles. Talanta, 74(3), 405–411.CrossRefGoogle Scholar
  41. Jain, A. K., Gupta, V. K., Singh, L. P., & Khurana, U. (1997). Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst, 122, 583–586.CrossRefGoogle Scholar
  42. Jain, A. K., Gupta, V. K., Singh, L. P., & Raisoni, J. R. (2006). A comparative study of Pb2+ 11 sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochimica Acta, 51, 2547–2553.CrossRefGoogle Scholar
  43. Jain, R., Gupta, V. K., Jadon, N., & Radhapyari, K. (2010). Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Analytical Biochemistry, 407, 79–88.CrossRefGoogle Scholar
  44. Jayasri, D., & Sriman, N. S. (2007). Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. Journal of Hazardous Materials, 144(1–2), 348–354.CrossRefGoogle Scholar
  45. Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A. A., Moradi, R., Mallakpour, S., & Beitollahi, H. (2014). A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosensors and Bioelectronics, 60, 1–7.CrossRefGoogle Scholar
  46. Kirchherr, H. (1993). Determination of hydrazine in human plasma by high-performance liquid chromatography. Journal of Chromatography B, 617(1), 157–162.CrossRefGoogle Scholar
  47. Leakakos, T., & Shank, R. C. (1994). Hydrazine genotoxicity in the neonatal rat. Toxicology and Applied Pharmacology, 126(2), 295–300.CrossRefGoogle Scholar
  48. Mahanthesha, K. R., Kumara Swamy, B. E., Chandra, U., Sharath Shankar, S., & Pai, K. V. (2012). Electrocatalytic oxidation of dopamine at murexide and TX-100 modified carbon paste electrode: a cyclic voltammetric study. Journal of Molecular Liquids, 172, 119–124.CrossRefGoogle Scholar
  49. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., Malakootian, M., & Karimi Maleh, H. (2014). Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environmental Monitoring and Assessment, 186(11), 7431–7441.CrossRefGoogle Scholar
  50. Mashhadizadeh, M. H., & Shamsipur, M. (1997). Silver(I)-selective membrane electrode based on hexathia-18-crown-6. Electroanalysis, 9, 478–480.CrossRefGoogle Scholar
  51. Mazloum-Ardakani, M., Rajabi, H., Mirjalili, B. B. F., Beitollahi, H., & Akbari, A. (2010). Nanomolar determination of hydrazine by TiO2 nanoparticles modified carbon paste electrode. Journal of Solid State Electrochemistry, 14(12), 2285–2292.CrossRefGoogle Scholar
  52. Mazloum-Ardakani, M., Taleat, Z., Beitollahi, H., & Naeimi, H. (2011). Nanomolar concentrations determination of hydrazine by a modified carbon paste electrode incorporating TiO2 nanoparticles. Nanoscale, 3(4), 1683–1689.CrossRefGoogle Scholar
  53. Mo, J.-W., Ogorevc, B., Zhang, X., & Pihlar, B. (2000). Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine. Electroanalysis, 12(1), 48–54.CrossRefGoogle Scholar
  54. Mokhtari, A., Karimi-Maleh, H., Ensafi, A. A., & Beitollahi, H. (2012). Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors and Actuators B: Chemical, 169, 96–105.CrossRefGoogle Scholar
  55. Molaakbari, E., Mostafavi, A., & Beitollahi, H. (2014). First electrochemical report for simultaneous determination of norepinephrine, tyrosine and nicotine using a nanostructure based sensor. Electroanalysis, 26, 2252–2260.CrossRefGoogle Scholar
  56. Mori, M., Tanaka, K., Xu, Q., Ikedo, M., Taoda, H., & Hu, W. (2004). Highly sensitive determination of hydrazine by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. Journal of Chromatography A, 1039(1–2), 135–139.CrossRefGoogle Scholar
  57. Moyo, M., Okonkwo, J. O., & Agyei, N. M. (2014). Maize tassel-modified carbon paste electrode for voltammetric determination of Cu(II). Environmental Monitoring and Assessment, 186(8), 4807–4817.CrossRefGoogle Scholar
  58. Oztekin, Y., Tok, M., Bilici, E., Mikoliunaite, L., Yazicigil, Z., Ramanaviciene, A., & Ramanavicius, A. (2012). Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochimica Acta, 76, 201–207.CrossRefGoogle Scholar
  59. Pinter, J. S., Brown, K. L., Young, P. A. D., & Peaslee, G. F. (2007). Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta, 71(3), 1219–1225.CrossRefGoogle Scholar
  60. Prasad, R., Gupta, V. K., & Kumar, A. (2004). Metallotetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Analytica Chimica Acta, 508, 61–70.CrossRefGoogle Scholar
  61. Raoof, J. B., Ojani, R., Beitollahi, H., & Hosseinzadeh, R. (2006). Electrocatalytic oxidation and highly selective voltammetric determination of l-cysteine at the surface of a1-[4-(ferrocenyl ethynyl)phenyl]-1-ethanone modified carbon paste electrode. Analytical Sciences, 22(9), 1213–1220.CrossRefGoogle Scholar
  62. Safavi, A., & Karimi, M. A. (2002). Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta, 58(4), 785–792.CrossRefGoogle Scholar
  63. Sax, N. I. (1980). Dangerous properties of industrial materials (4th ed., p. 814). New York: van Nostrand-Reinhold.Google Scholar
  64. Seifart, H. I., Gent, W. L., Parkin, D. P., van Jaarsveld, P. P., & Donald, P. R. (1995). High-performance liquid chromatographic determination of isoniazid, acetylisoniazid and hydrazine in biological fluids. Journal of Chromatography B, 674(2), 269–275.CrossRefGoogle Scholar
  65. Serpi, C., Kovatsi, L., & Girousi, S. (2014). Electroanalytical quantification of total dsDNA extracted from human sample using, an ionic liquid modified, carbon nanotubes paste electrode. Analytica Chimica Acta, 812, 26–32.CrossRefGoogle Scholar
  66. Shustina, R., & Lesser, J. H. (1991). Liquid chromatographic determination of hydrazine, carbohydrazide and thiocarbohydrazide in aqueous solutions. Journal of Chromatography A, 464(28), 208–212.CrossRefGoogle Scholar
  67. Siangproh, W., Chailapakul, O., Laocharoensuk, R., & Wang, J. (2005). Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta, 67(5), 903–907.CrossRefGoogle Scholar
  68. Srivastava, S. K., Gupta, V. K., & Jain, S. (1996). PVC-based 2,2, 2-cryptand sensor for zinc ions. Analytical Chemistry, 68, 1272–1275.CrossRefGoogle Scholar
  69. Sun, W., Wang, Y., Gong, S., Cheng, Y., Shi, F., & Sun, Z. (2013). Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin. Electrochimica Acta, 109, 298–304.CrossRefGoogle Scholar
  70. Valle, M. A., Gacitua, M., Diaz, F. R., Armijo, F., & Soto, J. P. (2012). Electro-synthesis and characterization of polythiophene nano-wires/platinum nano-particles composite electrodes. Study of formic acid electro-catalytic oxidation. Electrochimica Acta, 71, 277–282.CrossRefGoogle Scholar
  71. Wang, Y., Wu, Y., Xie, J., & Hu, X. (2013). Metal–organic framework modified carbon paste electrode for lead sensor. Sensors and Actuators B: Chemical, 177, 1161–1166.CrossRefGoogle Scholar
  72. Yu, X., Chen, Y., Chang, Z. L., Tang, F., & Wu, X. (2013). β-Cyclodextrin non-covalently modified ionic liquid-based carbon paste electrode as a novel voltammetric sensor for specific detection of bisphenol A. Sensors and Actuators B: Chemical, 186, 648–656.CrossRefGoogle Scholar
  73. Zheng, H., & Shank, R. C. (1996). Changes in methyl-sensitive restriction sites of liver DNA from hamsters chronically exposed to hydrazine sulfate. Carcinogenesis, 17(12), 2711–2717.CrossRefGoogle Scholar
  74. Zhike, H., Xinglian, L., Qingyao, L., Hongwu, T., Ximao, Y., Hui, C., & Yune, Z. (1996). Automatic injection analysis with chemiluminescence: detection determination of hydrazine. Microchemical Journal, 53(3), 356–360.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sayed Zia Mohammadi
    • 1
  • Hadi Beitollahi
    • 2
  • Elina Bani Asadi
    • 1
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations