Improving the application of laser-induced breakdown spectroscopy for the determination of total carbon in soils

  • Hang Vo-Minh Nguyen
  • Seung-Jae Moon
  • Jung Hyun Choi


The increase of atmospheric greenhouse gases such as CO2 has caused noticeable climate change. Since increased CO2 may contribute to carbon storage in terrestrial ecosystems through the CO2 cycle between the atmosphere and vegetation, it is necessary to improve methods for measuring C in soil. In this study, we determined the total carbon concentrations of soils using a highly sensitive and rapid method, laser-induced breakdown spectroscopy. The presence of C has been measured by detecting signal at the wavelength of 247.86 nm. The obstacle of Fe interference at the C measurement wavelength of 247.86 nm was reduced by selecting the optimal delay time of 1.4 μs. The ratio of peak intensities (areas) at 247.86 nm for C and 248.20 nm for Fe was then successfully applied to the calibration curve. In addition, to dismiss the problem of measuring the C lines at 247.86 nm, 193.03 nm has been used to observe C emission. Both the 193.03- and 247.86-nm lines provided significant linear calibrations. The 193.03-nm lines presented stronger relative accuracies in predicting the lower C concentrations of the unknown samples than that one at 247.86 nm.


Laser-induced breakdown spectroscopy (LIBS) Carbon Soil Fe interference Delay time Climate change 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Nos. 2013R1A1A1058884 and 2009-0083527).


  1. Ayyalasomayajula, K. K., Yu-Yueh, F., Singh, J. P., McIntyre, D. L., & Jain, J. (2012). Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples. Applied Optics, 51(7), 149–154.CrossRefGoogle Scholar
  2. Belkov, M., Burakov, V., Giacomo, G. A., Kiris, V., Raikov, S., & Tarasenko, N. (2010). Laser-induced breakdown spectroscopy for rapid detection of carbon in soils. Publications of the Astronomical Observatory of Belgrade, 89, 173–176.Google Scholar
  3. Cremers, D. A., & Radziemski, L. J. (2006). Handbook of laser-induced breakdown spectroscopy. Wiley.Google Scholar
  4. Cremers, D. A., Ebinger, M. H., Breshears, D. D., Unkefer, P. J., Kammerdiener, S. A., Ferris, M. J., Catlett, K. M., & Brown, J. R. (2001). Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). Journal of Environmental Quality, 30, 2202–2206.CrossRefGoogle Scholar
  5. da Silva, R. M., Milori, D. M. B. P., Ferreira, E. C., Ferreira, E. J., Krug, F. J., & Martin-Neto, L. (2008). Total carbon measurement in whole tropical soil sample. Spectrochimica Acta Part B: Atomic Spectra, 63(10), 1221–1224.CrossRefGoogle Scholar
  6. Ebinger, M. H., Norfleet, M. L., Breshears, D. D., Cremers, D. A., Ferris, M. J., Unkefer, P. J., Lamb, M. S., Goddard, K. L., & Meyer, C. W. (2003). Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement. Soil Science Society of America Journal, 67(5), 1616–1619.CrossRefGoogle Scholar
  7. Fellman, J., D’Amore, D., Hood, E., & Boone, R. (2008). Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska. Biogeochemistry, 88, 169–184.CrossRefGoogle Scholar
  8. Gehl, R., & Rice, C. (2007). Emerging technologies for in situ measurement of soil carbon. Climatic Change, 80(1–2), 43–54.CrossRefGoogle Scholar
  9. Glumac, N. G., Dong, W. K., & Jarrell, W. M. (2010). Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method. Soil Science Society of America Journal, 74(6), 1922–1928.CrossRefGoogle Scholar
  10. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., & Maskell, K. (1995). Climate change 1995: The science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  11. Kalbitz, K., Meyer, A., Yang, R., & Gerstberger, P. (2007). Response of dissolved organic matter in the forest floor to long-term manipulation of litter and through fall inputs. Biogeochemistry, 86, 301–318.CrossRefGoogle Scholar
  12. Lal, R. (1997). Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment. Soil & Tillage Research, 43, 81–107.CrossRefGoogle Scholar
  13. Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.CrossRefGoogle Scholar
  14. Lim, B., Ki, B., & Choi, J. H. (2011). Evaluation of nutrient release from sediments of artificial lake. Journal of Environmental Engineering, 137(5), 347–354.CrossRefGoogle Scholar
  15. Martin, M. Z., Wullschleger, S. D., Garten, J. C. T., & Palumbo, A. V. (2003). Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Applied Optics, 42(12), 2072–2077.CrossRefGoogle Scholar
  16. Martin, M. Z., Labbe, N., Andre, N., Harris, R., Ebinger, M., Wullschleger, S. D., & Vass, A. A. (2007). High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications. Spectrochimica Acta B, 62, 1426–1432.CrossRefGoogle Scholar
  17. Martin, M. Z., Labbé, N., André, N., Wullschleger, S. D., Harris, R. D., & Ebinger, M. H. (2010). Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy. Soil Science Society of America Journal, 74(1), 87–93.CrossRefGoogle Scholar
  18. Mielnick, P. C., & Dugas, W. A. (2000). Soil CO2 flux in a tallgrass prairie. Soil Biology & Biochemistry, 32(2), 221–228.CrossRefGoogle Scholar
  19. Miziolek, A.W., Palleschi, V., & Schechter, I. (2006). Laser induced breakdown spectroscopy (LIBS): Fundamentals and applications. Cambridge University.Google Scholar
  20. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, organic matter. In D. L. Sparks et al. (Eds.), Methods of soil analysis. Part 3—chemical methods. Madison: SSSA Book Ser 5 SSSA and ASA.Google Scholar
  21. Nguyen, H. V.-M., & Hur, J. (2011). Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools. Chemosphere, 85, 782–789.CrossRefGoogle Scholar
  22. Read, D., Beerling, D., Cannell, M., Cox, P., Curran, P., Grace, J., Ineson, P., Malhi, Y., Powlson, D., Shepherd, J., & Woodward, I. (2001). In The role of land carbon sinks in mitigating global climate change (pp. 1–27). London: The Royal Society.Google Scholar
  23. Reeves, J. B., McCarty, G. W., & Reeves, V. B. (2001). Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. Journal of Agricultural and Food Chemistry, 49(2), 766–772.CrossRefGoogle Scholar
  24. Rosell, R. A., Gasparoni, J. C., & Galantini, J. A. (2001). Soil organic matter evaluation. In R. Lal et al. (Eds.), Assessment methods for soil carbon (pp. 311–322). Boca Raton: Lewis Publ.Google Scholar
  25. Rusak, D. A., Castle, B. C., Smith, B. W., & Winefordner, J. D. (1997). Fundamentals and application of laser-induced breakdown spectroscopy. Critical Reviews in Analytical Chemistry, 27, 257–290.CrossRefGoogle Scholar
  26. Walkley, A. (1935). An examination of methods for determining organic C and nitrogen in soils. The Journal of Agricultural Science.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hang Vo-Minh Nguyen
    • 1
  • Seung-Jae Moon
    • 2
  • Jung Hyun Choi
    • 1
  1. 1.Department of Environmental Science and EngineeringEwha Womans UniversitySeodaemun-guKorea
  2. 2.School of Mechanical EngineeringHanyang UniversitySeongdong-guKorea

Personalised recommendations