Skip to main content

Advertisement

Log in

Improving the application of laser-induced breakdown spectroscopy for the determination of total carbon in soils

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The increase of atmospheric greenhouse gases such as CO2 has caused noticeable climate change. Since increased CO2 may contribute to carbon storage in terrestrial ecosystems through the CO2 cycle between the atmosphere and vegetation, it is necessary to improve methods for measuring C in soil. In this study, we determined the total carbon concentrations of soils using a highly sensitive and rapid method, laser-induced breakdown spectroscopy. The presence of C has been measured by detecting signal at the wavelength of 247.86 nm. The obstacle of Fe interference at the C measurement wavelength of 247.86 nm was reduced by selecting the optimal delay time of 1.4 μs. The ratio of peak intensities (areas) at 247.86 nm for C and 248.20 nm for Fe was then successfully applied to the calibration curve. In addition, to dismiss the problem of measuring the C lines at 247.86 nm, 193.03 nm has been used to observe C emission. Both the 193.03- and 247.86-nm lines provided significant linear calibrations. The 193.03-nm lines presented stronger relative accuracies in predicting the lower C concentrations of the unknown samples than that one at 247.86 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayyalasomayajula, K. K., Yu-Yueh, F., Singh, J. P., McIntyre, D. L., & Jain, J. (2012). Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples. Applied Optics, 51(7), 149–154.

    Article  Google Scholar 

  • Belkov, M., Burakov, V., Giacomo, G. A., Kiris, V., Raikov, S., & Tarasenko, N. (2010). Laser-induced breakdown spectroscopy for rapid detection of carbon in soils. Publications of the Astronomical Observatory of Belgrade, 89, 173–176.

    Google Scholar 

  • Cremers, D. A., & Radziemski, L. J. (2006). Handbook of laser-induced breakdown spectroscopy. Wiley.

  • Cremers, D. A., Ebinger, M. H., Breshears, D. D., Unkefer, P. J., Kammerdiener, S. A., Ferris, M. J., Catlett, K. M., & Brown, J. R. (2001). Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). Journal of Environmental Quality, 30, 2202–2206.

    Article  CAS  Google Scholar 

  • da Silva, R. M., Milori, D. M. B. P., Ferreira, E. C., Ferreira, E. J., Krug, F. J., & Martin-Neto, L. (2008). Total carbon measurement in whole tropical soil sample. Spectrochimica Acta Part B: Atomic Spectra, 63(10), 1221–1224.

    Article  Google Scholar 

  • Ebinger, M. H., Norfleet, M. L., Breshears, D. D., Cremers, D. A., Ferris, M. J., Unkefer, P. J., Lamb, M. S., Goddard, K. L., & Meyer, C. W. (2003). Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement. Soil Science Society of America Journal, 67(5), 1616–1619.

    Article  CAS  Google Scholar 

  • Fellman, J., D’Amore, D., Hood, E., & Boone, R. (2008). Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska. Biogeochemistry, 88, 169–184.

    Article  CAS  Google Scholar 

  • Gehl, R., & Rice, C. (2007). Emerging technologies for in situ measurement of soil carbon. Climatic Change, 80(1–2), 43–54.

    Article  CAS  Google Scholar 

  • Glumac, N. G., Dong, W. K., & Jarrell, W. M. (2010). Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: an improved method. Soil Science Society of America Journal, 74(6), 1922–1928.

    Article  CAS  Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., & Maskell, K. (1995). Climate change 1995: The science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kalbitz, K., Meyer, A., Yang, R., & Gerstberger, P. (2007). Response of dissolved organic matter in the forest floor to long-term manipulation of litter and through fall inputs. Biogeochemistry, 86, 301–318.

    Article  Google Scholar 

  • Lal, R. (1997). Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment. Soil & Tillage Research, 43, 81–107.

    Article  Google Scholar 

  • Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.

    Article  Google Scholar 

  • Lim, B., Ki, B., & Choi, J. H. (2011). Evaluation of nutrient release from sediments of artificial lake. Journal of Environmental Engineering, 137(5), 347–354.

    Article  CAS  Google Scholar 

  • Martin, M. Z., Wullschleger, S. D., Garten, J. C. T., & Palumbo, A. V. (2003). Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Applied Optics, 42(12), 2072–2077.

    Article  CAS  Google Scholar 

  • Martin, M. Z., Labbe, N., Andre, N., Harris, R., Ebinger, M., Wullschleger, S. D., & Vass, A. A. (2007). High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications. Spectrochimica Acta B, 62, 1426–1432.

    Article  Google Scholar 

  • Martin, M. Z., Labbé, N., André, N., Wullschleger, S. D., Harris, R. D., & Ebinger, M. H. (2010). Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy. Soil Science Society of America Journal, 74(1), 87–93.

    Article  CAS  Google Scholar 

  • Mielnick, P. C., & Dugas, W. A. (2000). Soil CO2 flux in a tallgrass prairie. Soil Biology & Biochemistry, 32(2), 221–228.

    Article  CAS  Google Scholar 

  • Miziolek, A.W., Palleschi, V., & Schechter, I. (2006). Laser induced breakdown spectroscopy (LIBS): Fundamentals and applications. Cambridge University.

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, organic matter. In D. L. Sparks et al. (Eds.), Methods of soil analysis. Part 3—chemical methods. Madison: SSSA Book Ser 5 SSSA and ASA.

    Google Scholar 

  • Nguyen, H. V.-M., & Hur, J. (2011). Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools. Chemosphere, 85, 782–789.

    Article  CAS  Google Scholar 

  • Read, D., Beerling, D., Cannell, M., Cox, P., Curran, P., Grace, J., Ineson, P., Malhi, Y., Powlson, D., Shepherd, J., & Woodward, I. (2001). In The role of land carbon sinks in mitigating global climate change (pp. 1–27). London: The Royal Society.

  • Reeves, J. B., McCarty, G. W., & Reeves, V. B. (2001). Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. Journal of Agricultural and Food Chemistry, 49(2), 766–772.

    Article  CAS  Google Scholar 

  • Rosell, R. A., Gasparoni, J. C., & Galantini, J. A. (2001). Soil organic matter evaluation. In R. Lal et al. (Eds.), Assessment methods for soil carbon (pp. 311–322). Boca Raton: Lewis Publ.

    Google Scholar 

  • Rusak, D. A., Castle, B. C., Smith, B. W., & Winefordner, J. D. (1997). Fundamentals and application of laser-induced breakdown spectroscopy. Critical Reviews in Analytical Chemistry, 27, 257–290.

    Article  CAS  Google Scholar 

  • Walkley, A. (1935). An examination of methods for determining organic C and nitrogen in soils. The Journal of Agricultural Science.

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Nos. 2013R1A1A1058884 and 2009-0083527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.VM., Moon, SJ. & Choi, J.H. Improving the application of laser-induced breakdown spectroscopy for the determination of total carbon in soils. Environ Monit Assess 187, 28 (2015). https://doi.org/10.1007/s10661-015-4286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4286-z

Keywords

Navigation