Assessment of the concentrations of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils from the Sarno River basin, Italy, and ecotoxicological survey by Daphnia magna

  • Michele Arienzo
  • Stefano Albanese
  • Annamaria Lima
  • Claudia Cannatelli
  • Francesco Aliberti
  • Flavia Cicotti
  • Shiuhua Qi
  • Benedetto De Vivo


We studied the contamination level of the soils of the Sarno River basin in southwestern Italy by combined acute toxicity test with Dapnia magna and chemical extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). For the ecotoxicological assessment, 188 samples were taken and coincided with those of a previous study (2013) where heavy metals were surveyed. For the organics assessment, 21 samples were selected nearby representative areas of elevated anthropic pressure. About 10.1 % of the samples showed noticeable sign of D. magna mortality, 61–100 %, and fall along the potentially floatable areas of Sarno and Solofrana basins with high degree of contamination by Cr, As, Zn, and Hg. High levels of ecotoxicity, 61–100 %, were determined in the lower Sarno River basin in areas of moderate or low degree of contamination by Cd, Cu Hg, Pb, Sb, Sn, and Zn. Benzo(a)pyrene, indenopyrene, and benzo(g,h,i)perylene were present at concentrations of 0.32, 0.23, and 0.18 mg kg−1, respectively, 2- to 3-fold the law limits with most of the samples falling nearby the points where the ecotoxicity output was close to 100 %. Among OCPs, pp′-DDT had a mean of 0.225 mg kg−1 and hence about more than 200- and 2-fold the residential, 0.01 mg kg−1, and commercial/industrial limits, 0.1 mg kg−1 and determined mainly in the central Sarno valley in an area where elevated concentrations of benzopyrene and D. magna mortality were also observed. The study evidenced the high rate of contamination by PAHs and OCPs of the soils and the need of urgent remediation actions.


Sarno basin Polycyclic aromatic hydrocarbons Organochlorine pesticides Soil pollution Ecotoxicity 



This research was carried out as part of a FARO project. Within the project, funded by the University of Napoli Federico II, in addition to stream sediments, other environmental media (water, soil, and vegetation) have been collected together with human hair of resident population in order to investigate the relationships between environmental pollution and human health.


  1. Adamo, P., Colombo, C., Terribile, F., De Santo, A. (1999). Degradation processes in volcanic soils (pp. 24–47). Joint Meeting WG3/4 Cost Action 622, Napoli, May 27–30.Google Scholar
  2. Adamo, P., Denaix, L., Terribile, F., & Zampella, M. (2003). Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma, 117, 347–366.CrossRefGoogle Scholar
  3. Adamo, P., Zampella, M., Gianfreda, L., Renella, G., Rutigliano, F. A., & Terribile, F. (2006). Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties. Environmental Pollution, 144, 308–316.CrossRefGoogle Scholar
  4. Albanese, S., Iavazzo, P., Adamo, P., Lima, A., & De Vivo, B. (2012). Assessment of the environmental conditions of the Sarno river basin (south Italy): a stream sediment approach. Environmental Geochemistry Health. doi: 10.1007/s10653-012-9483-x.Google Scholar
  5. Apitz, S. E., Barbanti, A., Bocci, M., Carlin, A., Montobbio, L., & Bernstein, A. G. (2007). The sediments of the Venice Lagoon (Italy) evaluated in a screening risk assessment approach: part I—application of international sediment quality guidelines. International Environmental Assessment and Management, 3, 393–414.Google Scholar
  6. Arienzo, M., Adamo, P., Bianco, M. R., & Violante, P. (2001). Impact of land use and urban runoff on the contamination of the Sarno river basin in southwestern Italy. Water, Air, & Soil Pollution, 131, 349–366.CrossRefGoogle Scholar
  7. Basile, G., Palmieri, F., Violante, P. (1985). Il fiume Sarno: valutazione delle variazioni dell’inquinamento (pp. 258–293). Atti del Convegno Nazionale Inquinamento idrico e conservazione dell’Ecosistema. Vico Equense, February, 22–23.Google Scholar
  8. Capuano, F., Cavalchi, B., Martinelli, G., Pecchini, G., Renna, E., & Scaroni, I. (2005). Bertacchi M.. Environmental prospection for PCDD/PCDF, PAH, PCB and heavy metals around the incinerator power plant of Reggio Emilia town (Northern Italy) and surrounding main roads. Chemosphere, 58, 1563–1569.CrossRefGoogle Scholar
  9. Chrysikou, L., Gemenetzis, P., Kouras, A., Manoli, E., Terzi, E., & Samara, C. (2008). Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environment International, 34, 210–225.CrossRefGoogle Scholar
  10. Chung, N., & Alexander, M. (1998). Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environmental Science & Technology, 32, 855–860.CrossRefGoogle Scholar
  11. Chung, N., & Alexander, M. (2002). Effect of properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 48, 109–115.CrossRefGoogle Scholar
  12. Cicchella, D., Giaccio, L., Lima, A., Albanese, S., Cosenza, A., Civitillo, D., & De Vivo, B. (2013). Assessment of the topsoil heavy metals pollution in the Sarno River basin, south Italy. Environmental Earth Science. doi: 10.1007/s12665-013-2916-8.Google Scholar
  13. Cinque, A., Aucelli, P. P., Brancaccio, C., Mele, L., Milia, R., Robustelli, A., et al. (1997). Volcanism, tectonics and recent geomorphological change in the Bay of Naples. Geografia Fisica e Dinamica Quaternaria, 2, 123–141.Google Scholar
  14. Conte, P., Zena, A., Pilidis, G., & Piccolo, A. (2001). Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environmental Pollution, 112, 27–31.CrossRefGoogle Scholar
  15. De Pippo, T., Donadio, C., Guida, M., & Petrosino, C. (2006). The case of Sarno river (southern Italy). Effects Environ Geochem Health of geomorphology on the environmental impacts. Environmenal Science & Pollution Research, 13, 184–191.CrossRefGoogle Scholar
  16. European Normative EN ISO 6341 (1999). Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Acute toxicity test.Google Scholar
  17. European Normative EN ISO 6341 (2013). Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Acute toxicity test.Google Scholar
  18. Flerov, B. (1989). Ecological and physiological aspects of toxicology of aquatic animals, Nauka, Leningrad, 205 pGoogle Scholar
  19. Gevao, B., Semple, K. T., & Jones, K. C. (2000). Bound pesticide residues in soil: a review. Environmental Pollution, 108, 3–145.CrossRefGoogle Scholar
  20. Hatzinger, P. B., & Alexander, M. (1995). Effect of aging of chemicals in soil on their biodegradability and extractability. Environmental Science & Technology, 29, 537–545.CrossRefGoogle Scholar
  21. ISTAT, (2001). Censimento generale dell’industria e dei servizi, Rome, ItalyGoogle Scholar
  22. Khan, M. I., Cheema, S. A., Tang, X. J., Shen, C. F., Sahi, S. T., & Jabbar, A. (2012). Biotoxicity assessment of pyrene in soil using a battery of biological assays. Archives of Environmental Contamination Toxicology, 63, 503–512.CrossRefGoogle Scholar
  23. Laor, Y., Strom, P. F., & Farmer, W. J. (1996). The effect of sorption on phenanthrene bioavailability. Journal of Biotechnology, 51, 227–234.CrossRefGoogle Scholar
  24. Meylan, W., Howard, P., & Boethling, R. (1992). Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environmental Science & Technology, 26, 1560–1567.CrossRefGoogle Scholar
  25. Official Bulletin of the Italian Republic (2006). Law n 152. 88, 14, April. Environmental rules. Ordinary supplement, 96.Google Scholar
  26. Peters, R., De Bernardi, R. (1987). Daphnia, Verbania, Pallanza, 399 pGoogle Scholar
  27. Ministero delle Politiche Agricole, Osservatorio Nazionale Pedologico e per la Qualità del Suolo (1997). Metodi di analisi fisica del suolo. Franco Angeli Ed., MilanoGoogle Scholar
  28. Racke, K., Skidmore, M., Hamilton, D., Unsworth, J. B., Miyamoto, J., & Cohen, S. Z. (1997). Pesticide fate in tropical soils. Pure Applied Chemistry, 69, 1349–1371.CrossRefGoogle Scholar
  29. Reid, B. J., Stokes, J. D., Jones, K. C., & Semple, K. T. (2000). Nonexhaustive cyclodextrin-based extraction technique for the valuation of PAH bioavailability. Environmental Science and Technology, 34, 3174–3179.CrossRefGoogle Scholar
  30. Robertson, B. K., & Alexander, M. (1998). Sequestration of DDT and dieldrin in soil: Disappearance of acute toxicity but not the compounds. Environmental Toxicology & Chemistry, 17, 1034–1038.CrossRefGoogle Scholar
  31. Sabljic, A. (1984). Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. Journal Agriculture & Food Chemistry, 32, 243–246.CrossRefGoogle Scholar
  32. Sforzini, S., Boeri, M., Dagnino, A., Oliveri, L., Bolognesi, C., & Viarengo, A. (2012). Genotoxicity assessment in Eisenia andrei coelomocytes: a study of the induction of DNA damage and micronuclei in earthworms exposed to B[a]P- and TCDD-spiked soils. Mutation Research, 746, 35–41.CrossRefGoogle Scholar
  33. Swan, R. L., McCall, P. J., & Laskowski, D. A. (1981). Dishburger. H.J. Estimation of soil sorption constants of organic chemicals by high-performance liquid chromatography. ASTM Special Technical Publication, 737, 43–48.Google Scholar
  34. Terribile, F., Di Gennaro, A. (1996). Rapporto conclusivo U.O.T. Convenzione Regione Campania. Carta dei suoli (1:50.000) dell’Agro Nocerino Sarnese.Google Scholar
  35. Tsatsakis, A. M., Tzatzarakis, M. N., Tutudaki, M., Babatsikou, F., Alegakis, A. K., & Koutis, C. (2008). Assesment of levels of organochlorine pesticides and their metabolites in the hair of a Greek rural human population. Human Exposure Toxicology, 27, 933–940.CrossRefGoogle Scholar
  36. Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal Plant Nutrition & Soil Science, 163, 229–248.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michele Arienzo
    • 1
  • Stefano Albanese
    • 1
  • Annamaria Lima
    • 1
  • Claudia Cannatelli
    • 1
  • Francesco Aliberti
    • 2
  • Flavia Cicotti
    • 2
  • Shiuhua Qi
    • 3
  • Benedetto De Vivo
    • 1
  1. 1.Dipartimento di Scienze della Terra, dell’Ambiente e delle RisorseUniversità degli Studi di Napoli “Federico II”NaplesItaly
  2. 2.Laboratori di Igiene: Acque, Alimenti e Ambiente, Dipartimento di BiologiaUniversità di Napoli Federico II, Complesso Universitario di Monte S. AngeloNaplesItaly
  3. 3.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations